Document Type : Original Article(s)
Authors
1 Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
2 Clinical Care and Health Promotion Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
3 Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
Abstract
Background: Bladder cancer (BC) is the 10th most common cancer worldwide. Microorganisms, including bacteria, may contribute to urological tumor development. Escherichia coli, responsible for 70% of urinary tract infections, has been linked to BC progression. This study investigated the potential role of Escherichia coli in BC pathogenesis using a bioinformatics approach.
Method: This computational study used human gene expression and host-pathogen protein interaction data related to BC. Gene expression data were sourced from The Cancer Genome Atlas, while host-pathogen interactions were obtained from Host-Pathogen Interaction Database. Differentially expressed genes/proteins were identified, filtered based on interactions, and analyzed for their significance in BC. Differentially expressed genes/proteins were extracted using EdgeR. EdgeR primarily uses the negative binomial distribution to model count data, which is common in RNA-Seq experiments. A protein-protein interaction network was constructed to identify hub genes/proteins, and pathway enrichment analysis assessed the relevance of these genes/proteins in BC.
Results: We identified 118 interactions between differentially expressed genes/proteins of the human host and E. coli proteins in BC. Network analysis highlighted E. coli genes O52302 and Q8XAJ5 as having the most interactions with human genes. Additionally, FADD, RIPK1, TRADD, LRRK2, and CDC42 were significant in the interaction network. Pathway enrichment analysis indicated involvement in pathways such as TNF Signaling and Extrinsic Apoptotic Signaling.
Conclusion: This study identifies key hub genes and pathways in BC potentially influenced by E. coli, highlighting the need for in vitro and in vivo validation of these findings through comparative genomics interactions.
Highlights
Maryam Rahimi (PubMed)
Keywords
Main Subjects
This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination, and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.30476/mejc.2025.103953.2160
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660. PMID: 33538338.
- Clark KR. Bladder cancer: Types, risk factors, diagnosis, and treatment. Radiol Technol. 2022;94(1):46-50. PMID: 36347615.
- Cambier S, Sylvester RJ, Collette L, Gontero P, Brausi MA, van Andel G, et al. EORTC nomograms and risk groups for predicting recurrence, progression, and disease-specific and overall survival in non-muscle-invasive stage Ta-T1 urothelial bladder cancer patients treated with 1-3 years of maintenance bacillus Calmette-Guérin. Eur Urol. 2016;69(1):60-9. doi: 10.1016/j.eururo.2015.06.045. PMID: 26210894.
- Hadkhale K, Martinsen JI, Weiderpass E, Kjaerheim K, Sparen P, Tryggvadottir L, et al. Occupational exposure to solvents and bladder cancer: A population-based case control study in Nordic countries. Int J Cancer. 2017;140(8):1736-46. doi: 10.1002/ijc.30593. PMID: 28032642.
- Lipunova N, Wesselius A, Cheng KK, van Schooten FJ, Bryan RT, Cazier JB, et al. Gene-environment interaction with smoking for increased non-muscle-invasive bladder cancer tumor size. Transl Androl Urol. 2020;9(3):1329-37. doi: 10.21037/tau-19-523. PMID: 32676417; PMCID: PMC7354298.
- Sholl J, Sepich-Poore GD, Knight R, Pradeu T. Redrawing therapeutic boundaries: microbiota and cancer. Trends Cancer. 2022;8(2):87-97. doi: 10.1016/j.trecan.2021.10.008. PMID: 34844910; PMCID: PMC8770609.
- Raza MH, Gul K, Arshad A, Riaz N, Waheed U, Rauf A, et al. Microbiota in cancer development and treatment. J Cancer Res Clin Oncol. 2019;145(1):49-63. doi: 10.1007/s00432-018-2816-0. PMID: 30542789.
- Petkevicius V, Lehr K, Kupcinskas J, Link A. Fusobacterium nucleatum: Unraveling its potential role in gastric carcinogenesis. World J Gastroenterol. 2024;30(35):3972-84. doi: 10.3748/wjg.v30.i35.3972. PMID: 39351058; PMCID: PMC11438658.
- Ge Y, Wang X, Guo Y, Yan J, Abuduwaili A, Aximujiang K, et al. Gut microbiota influence tumor development and Alter interactions with the human immune system. J Exp Clin Cancer Res. 2021;40(1):42. doi: 10.1186/s13046-021-01845-6. Erratum in: J Exp Clin Cancer Res. 2021;40(1):334. doi: 10.1186/s13046-021-02131-1. PMID: 33494784; PMCID: PMC7829621.
- Doocey CM, Finn K, Murphy C, Guinane CM. The impact of the human microbiome in tumorigenesis, cancer progression, and biotherapeutic development. BMC Microbiol. 2022;22(1):53. doi: 10.1186/s12866-022-02465-6. PMID: 35151278; PMCID: PMC8840051.
- Bučević Popović V, Šitum M, Chow CT, Chan LS, Roje B, Terzić J. The urinary microbiome associated with bladder cancer. Sci Rep. 2018;8(1):12157. doi: 10.1038/s41598-018-29054-w. PMID: 30108246; PMCID: PMC6092344.
- Abd-El-Raouf R, Ouf SA, Gabr MM, Zakaria MM, El-Yasergy KF, Ali-El-Dein B. Escherichia coli foster bladder cancer cell line progression via epithelial mesenchymal transition, stemness and metabolic reprogramming. Sci Rep. 2020;10(1):18024. doi: 10.1038/s41598-020-74390-5. PMID: 33093503; PMCID: PMC7581527.
- El-Mosalamy H, Salman TM, Ashmawey AM, Osama N. Role of chronic E. coli infection in the process of bladder cancer- an experimental study. Infect Agent Cancer. 2012;7(1):19. doi: 10.1186/1750-9378-7-19. PMID: 22873280; PMCID: PMC3511874.
- Maddah R, Ghanbari F, Veisi M, Koosehlar E, Shadpirouz M, Basharat Z, et al. Unveiling potential biomarkers for urinary tract infection: An integrated bioinformatics approach. Adv Biomed Res. 2024;13:44. doi: 10.4103/abr.abr_355_23. PMID: 39224398; PMCID: PMC11368229.
- Maljkovic Berry I, Melendrez MC, Bishop-Lilly KA, Rutvisuttinunt W, Pollett S, Talundzic E, et al. Next generation sequencing and bioinformatics methodologies for infectious disease research and public health: Approaches, applications, and considerations for development of laboratory capacity. J Infect Dis. 2020;221(Suppl 3):S292-S307. doi: 10.1093/infdis/jiz286. PMID: 31612214.
- Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19(1A):A68-77. doi: 10.5114/wo.2014.47136. PMID: 25691825; PMCID: PMC4322527.
- Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8):e71. doi: 10.1093/nar/gkv1507. PMID: 26704973; PMCID: PMC4856967.
- Chen Y, McCarthy D, Ritchie M, Robinson M, Smyth G, Hall E. edgeR: differential analysis of sequence read count data User’s Guide. [Internet] [cited 2024 October 26]. Available from: https://www.bioconductor.org/packages/devel/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
- Ammari MG, Gresham CR, McCarthy FM, Nanduri B. HPIDB 2.0: a curated database for host-pathogen interactions. Database (Oxford). 2016;2016:baw103. doi: 10.1093/database/baw103. PMID: 27374121; PMCID: PMC4930832.
- Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: Network analysis and visualization of proteomics data. J Proteome Res. 2019;18(2):623-32. doi: 10.1021/acs.jproteome.8b00702. PMID: 30450911; PMCID: PMC6800166.
- Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638-D646. doi: 10.1093/nar/gkac1000. PMID: 36370105; PMCID: PMC9825434.
- Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with Enrichr. Curr Protoc. 2021;1(3):e90. doi: 10.1002/cpz1.90. PMID: 33780170; PMCID: PMC8152575.
- van Hoogstraten LMC, Vrieling A, van der Heijden AG, Kogevinas M, Richters A, Kiemeney LA. Global trends in the epidemiology of bladder cancer: challenges for public health and clinical practice. Nat Rev Clin Oncol. 2023;20(5):287-304. doi: 10.1038/s41571-023-00744-3. PMID: 36914746.
- Snell KIE, Ward DG, Gordon NS, Goldsmith JC, Sutton AJ, Patel P, et al. Exploring the roles of urinary HAI-1, EpCAM & EGFR in bladder cancer prognosis & risk stratification. Oncotarget. 2018;9(38):25244-53. doi: 10.18632/oncotarget.25397. PMID: 29861867; PMCID: PMC5982738.
- Halaseh SA, Halaseh S, Alali Y, Ashour ME, Alharayzah MJ. A review of the etiology and epidemiology of bladder cancer: All you need to know. Cureus. 2022;14(7):e27330. doi: 10.7759/cureus.27330. PMID: 36042998; PMCID: PMC9411696.
- Markowski MC, Boorjian SA, Burton JP, Hahn NM, Ingersoll MA, Maleki Vareki S, et al. The microbiome and genitourinary cancer: A collaborative review. Eur Urol. 2019;75(4):637-46. doi: 10.1016/j.eururo.2018.12.043. PMID: 30655087; PMCID: PMC9774685.
- Nadler N, Kvich L, Bjarnsholt T, Jensen JB, Gögenur I, Azawi N. The discovery of bacterial biofilm in patients with muscle invasive bladder cancer. APMIS. 2021;129(5):265-70. doi: 10.1111/apm.13097. PMID: 33205550.
- Borghi A, Verstrepen L, Beyaert R. TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem Pharmacol. 2016;116:1-10. doi: 10.1016/j.bcp.2016.03.009. PMID: 26993379.
- Schneider AT, Gautheron J, Feoktistova M, Roderburg C, Loosen SH, Roy S, et al. RIPK1 suppresses a TRAF2-dependent pathway to liver cancer. Cancer Cell. 2017;31(1):94-109. doi: 10.1016/j.ccell.2016.11.009. PMID: 28017612.
- Ermine K, Yu J, Zhang L. Role of Receptor Interacting Protein (RIP) kinases in cancer. Genes Dis. 2021;9(6):1579-93. doi: 10.1016/j.gendis.2021.10.007. PMID: 36157481; PMCID: PMC9485196.
- Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, et al. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). Int J Mol Med. 2019;44(3):771-86. doi: 10.3892/ijmm.2019.4244. PMID: 31198981; PMCID: PMC6658002.
- Van Quickelberghe E, De Sutter D, van Loo G, Eyckerman S, Gevaert K. A protein-protein interaction map of the TNF-induced NF-κB signal transduction pathway. Sci Data. 2018;5:180289. doi: 10.1038/sdata.2018.289. PMID: 30561431; PMCID: PMC6298254.
- Tortola L, Nitsch R, Bertrand MJM, Kogler M, Redouane Y, Kozieradzki I, et al. The tumor suppressor hace1 is a critical regulator of TNFR1-mediated cell fate. Cell Rep. 2016;15(7):1481-92. doi: 10.1016/j.celrep.2016.04.032. Erratum in: Cell Rep. 2016;16(12):3414. doi: 10.1016/j.celrep.2016.08.072. PMID: 27160902; PMCID: PMC4893156.
- Vection S, O'Callaghan D, Keriel A. CD98hc in host-pathogen interactions: roles of the multifunctional host protein during infections. FEMS Microbiol Rev. 2022;46(5):fuac023. doi: 10.1093/femsre/fuac023. PMID: 35595511.
- Jing J, Wang B, Liu P. The functional role of SEC23 in vesicle transportation, autophagy and cancer. Int J Biol Sci. 2019;15(11):2419-26. doi: 10.7150/ijbs.37008. PMID: 31595159; PMCID: PMC6775307.