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Abstract 

Background: Bladder cancer (BC) is the 10th most common cancer worldwide. Microorganisms, 

including bacteria, may contribute to urological tumor development. Escherichia coli, responsible 

for 70% of urinary tract infections, has been linked to BC progression. This study investigated the 

potential role of Escherichia coli in BC pathogenesis using a bioinformatics approach. 

Method: This computational study used human gene expression and host-pathogen protein 

interaction data related to BC. Gene expression data were sourced from The Cancer Genome Atlas, 

while host-pathogen interactions were obtained from Host-Pathogen Interaction Database. 

Differentially expressed genes/proteins were identified, filtered based on interactions, and 

analyzed for their significance in BC. Differentially expressed genes/proteins were extracted using 

EdgeR. EdgeR primarily uses the negative binomial distribution to model count data, which is 

common in RNA-Seq experiments. A protein-protein interaction network was constructed to 

identify hub genes/proteins, and pathway enrichment analysis assessed the relevance of these 

genes/proteins in BC. 

Results: We identified 118 interactions between differentially expressed genes/proteins of the 

human host and E. coli proteins in BC. Network analysis highlighted E. coli genes O52302 and 

Q8XAJ5 as having the most interactions with human genes. Additionally, FADD, RIPK1, 

TRADD, LRRK2, and CDC42 were significant in the interaction network. Pathway enrichment 

analysis indicated involvement in pathways such as TNF Signaling and Extrinsic Apoptotic 

Signaling. 

Conclusion: This study identifies key hub genes and pathways in BC potentially influenced by E. 

coli, highlighting the need for in vitro and in vivo validation of these findings through comparative 

genomics interactions. 
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Introduction 

Bladder cancer (BC), a prevalent malignancy 

worldwide, with 573,278 newly diagnosed 

cases and an estimated 212,536 deaths, is the 

10th most common cancer globally. In 2022, 

the United States alone reported 

approximately 81,180 new cases and 17,100 

deaths related to BC.1,2Among BC patients, 

approximately 75% present with non-muscle 

invasive disease (NMIBC), confined to the 

mucosa or submucosa, whereas 25% have 

muscle-invasive disease (MIBC).3 BC is a 

prevalent urinary tract tumor in clinical 

practice, but there remains a need for deeper 

insights into its occurrence, diagnosis, and 

treatment. Apart from genetic factors, 

environmental influences, such as smoking 

and occupational exposure, also play a 

significant role in BC development.4,5 

Interestingly, these environmental factors can 

impact changes in the microbiota.6 The 

microbiota, a diverse group of 

microorganisms that reside in the body, has a 

significant impact on cancer development 

through mechanisms like inflammation, 

carcinogen metabolism, and immune 

modulation.7 Chronic inflammation, caused 

by dysbiosis, is commonly associated with 

cancer risk, can lead to chronic inflammation, 

which creates a tumor-promoting 

environment by releasing pro-inflammatory 

cytokines and reactive oxygen species that 

damage DNA and promote cellular 

proliferation. Certain bacteria, such as 

Fusobacterium nucleatum in colorectal 

cancer and Helicobacter pylori in gastric 

cancer, are directly associated with 

tumorigenesis.8 The microbiota has the 

potential to influence the immune response to 

tumors, which could have an impact on 

cancer progression and treatment 

effectiveness.9 Additionally, certain 

microbes can modulate the immune response, 

either enhancing anti-tumor immunity or 

suppressing it, thereby affecting the body’s 

ability to detect and eliminate cancer cells. 

Collectively, these mechanisms illustrate the 

multifaceted role of microorganisms in 

cancer biology, highlighting their potential 

impact on tumorigenesis and progression.10 

The full understanding of these complex 

interactions and their implications for cancer 

prevention and therapy requires ongoing 

research. Evidence pointed out that twenty 

percent of malignant tumor tissues had 

microbial infiltration. This suggested that BC 

tissues might have been contaminated by 

bacteria. A contributing factor or cofactor in 

the development of urological tumors may be 

bacteria, fungi, or viruses in the genitourinary 

tract. The microbiota might be crucial in the 

treatment of BC.11 For instance, seventy 

percent of urinary tract infections originate 

from infection with Escherichia coli (E. coli). 

In a study focusing on E. coli, it was 

demonstrated that this bacterium can 

facilitate the advancement of BC T24 cells by 

inducing epithelial-mesenchymal 

transformation and metabolic 

reprogramming.12 

Another study was conducted to assess the 

role of E. coli infection in BC development. 

They examined histopathological changes in 

bladder tissue and measured nuclear factor 

kappa p65 (NF-κBp65), Bcl-2, and 

interleukin 6 (IL-6) levels in different groups 

of male albino rats. The results indicated that 

E. coli infection alone could cause some 

histopathological changes in the bladder, and 

when combined with a nitrosamine 

precursor, it showed the highest incidence of 

urinary bladder lesions, suggesting a 

significant additive and synergistic role of E. 

coli in bladder carcinogenesis.13 

The association between E. coli infection and 

urinary tract cancers, with a particular focus 

on BC, remains an area of active research and 

ongoing debate in the scientific community. 

While there have been indications of a 

possible link, the exact mechanisms and 

extent of E. coli's involvement in promoting 

or influencing cancer development in the 



urinary tract have not been entirely 

elucidated.  

A bioinformatics approach is particularly 

suitable for investigating the role of E. coli 

infection in the pathogenesis of bladder 

cancer due to its numerous advantages in 

handling complex biological data. 

Bioinformatics enables the integration and 

analysis of large datasets generated from 

high-throughput techniques, allowing to 

uncover patterns and correlations that may 

not be evident through traditional methods.14 

Also, bioinformatics tools facilitate rapid 

data processing and analysis, significantly 

reducing the time required to derive 

meaningful insights from experimental data. 

Bioinformatics approaches are often more 

cost-effective compared with extensive 

laboratory experiments, as they minimize the 

need for expensive reagents and extensive 

biological replicates.15  

In this study, we applied a bioinformatics 

approach to explore potential correlations 

between cancer mechanisms and the presence 

of specific microbial species. Through this 

comprehensive and innovative approach, we 

aimed to advance our knowledge of the 

potential role of E. coli in BC pathogenesis. 

This study aimed to investigate the potential 

role of E. coli in bladder cancer pathogenesis 

through a bioinformatics approach. 

 

Material and Methods 

Data selection 

The present study was a computational 

analysis using transcriptomics data by RNA-

seq data. The dataset used in this study 

consists of two sets of data, one related to the 

host (human) and the other to the pathogen. 

The human host gene expression data 

associated with BC is obtained from The 

Cancer Genome Atlas (TCGA) database, 

accessible at https://portal.gdc.cancer.gov/. 

On the other hand, for the collection of E. 

coli-associated host proteins, the host-

pathogen-protein-protein interactions (HP-

PPIs) of E. coli were retrieved from the Host-

Pathogen Interaction Database (HPIDB 

v.3.0), which is a publicly available 

biological repository known for collecting 

experimentally verified HP-PPIs. The 

database can be accessed at 

https://hpidb.igbb.msstate.edu/. 

Data analysis 

The gene expression data for BC was 

obtained from the TCGA database.16 Using 

the R package TCGAbiolinks (Version 

Release 3.20), we were able to freely 

download all the BC data along with the 

corresponding clinical information.17 

Following the data acquisition, we performed 

normalization to ensure that the gene 

expression levels were comparable across 

samples. This involved using the DESeq2 

package for variance stabilization and 

normalization of raw counts, which helps to 

account for differences in sequencing depth 

and other technical variations. After 

normalization, we applied log2 

transformation to stabilize the variance and 

facilitate downstream analyses. A total of 431 

bladder tissue samples were included in the 

study, comprising 412 BC samples and 19 

normal samples. Differentially expressed 

genes/proteins (DEGs/DEPs) were extracted 

using the EdgeR library (Version 4.0) in the 

R programming language, as well as the 

DGEList function.18 EdgeR primarily uses 

the negative binomial distribution to model 

count data, which is common in RNA-Seq 

experiments. Finally, DEGs were filtered 

based on an absolute log fold change greater 

than 2 and an adjusted p-value of less than 

0.05. Only the genes that encode proteins 

were retained. 

Interactions between DEGs/DEPs of host 

and E. coli proteins  

As mentioned in the previous step, HP-PPIs 

of E. coli were obtained from HPIDB.19 In 

this step, DEGs/DEPs were filtered based on 

the HP-PPIs of E. coli to retain only common 

interactions between the DEGs/DEPs of the 

https://portal.gdc.cancer.gov/
https://hpidb.igbb.msstate.edu/


human host and E. coli proteins in the context 

of BC. The interactions of genes/proteins 

between the human host and E. coli in BC 

were imported to Cytoscape and visualized.20 

Then, this network was analyzed using the 

NetworkAnalyzer plugin, employing metrics 

such as Degree, Stress, and Topological 

Coefficient to assess the significance and 

roles of specific genes/proteins in the context 

of the interactions between the human host 

and E. coli in BC. 

Interactions of DEGs/DEPs in host  

The DEGs/DEPs of the host that interact with 

E. coli proteins were considered for this step. 

At first, the protein-protein interactions 

(PPIs) network was created using both 

STRING (Version v10) and Cytoscape 

(Version 3.7.0) software.21 The parameters in 

STRING were maintained with a minimum 

required interaction score of 0.4. Then, the 

network underwent analysis using the 

NetworkAnalyzer plugin, where metrics such 

as degree, stress, and topological coefficient 

were employed to determine the hub 

genes/proteins concerning the human host in 

BC. 

Pathway enrichment analysis of 

DEGs/DEPs in host  

KEGG pathway as a valuable database for 

systematically analyzing high-level genome 

pathways related to genes. To perform 

pathway enrichment analysis for 

DEGs/DEPs, Enrichr software was used,22 

and a statistical significance threshold of 

adjusted p-value less than 0.05 was applied. 

 

Results 

Data analysis 

After downloading and processing the gene 

expression data for BC from TCGA, 

DEGs/DEPs were extracted from the data. 

Based on ourresults, a total of 2141 

DEGs/DEPs were identified, comprising 650 

up-regulated and 1491 down-regulated 

genes/proteins. To visualize the expression 

patterns of a subset of 20 genes was selected 

for analysis across 20 samples, a heatmap 

was generated, highlighting the differences in 

expression levels. This heatmap is depicted in 

figure 1, offering a clear representation of the 

expression profiles of these genes in the 

context of BC. 

Interactions between DEGs/DEPs of host 

and E. coli proteins  

After identifying DEGs/DEPs, HP-PPIs of E. 

coli were retrieved from HPIDB. The 

DEGs/DEPs were subjected to filtering, 

based on the HP-PPIs of E. coli. A total of 

118 unique interactions were identified as 

shared between the DEGs/DEPs of the 

human host and E. coli proteins within the 

context of BC. These interactions were 

subjected to Cytoscape for visualization 

(Figure 2). Next, this network was analyzed 

using NetworkAnalyzer. According to results, 

O52302 and Q8XAJ5 genes in E.coli exhibit 

the highest degree and most interactions with 

human genes (Table 1). 

Interactions of DEGs/DEPs in host  

As mentioned in the previous section, a total 

of 2141 DEGs/DEPs were identified in the 

host for BC. These DEGs/DEPs were 

subjected to STRING to assess interactions 

between proteins. The extracted PPIs were 

examined using NetworkAnalyzer. As 

revealed by the analysis, FADD, RIPK1, 

TRADD, LRRK2, and CDC42 genes play a 

more significant role in the network in terms 

of their degree of interaction with other genes 

compared with others (Figure 3 and Table 2). 

Pathway enrichment analysis of 

DEGs/DEPs in host  

To perform pathway enrichment analysis for 

DEGs/DEPs, Enrichr tool was used. The top 

five pathway terms are TNF Signaling, 

Defective RIPK1-mediated Regulated 

Necrosis, TNFR1-induced NFkappaB 

Signaling Pathway, Caspase Activation via 

Extrinsic Apoptotic Signaling Pathway, and 

Regulation of TNFR1 Signaling, respectively 

(Table 3). 

 



Discussion 
In this study, we identified 118 interactions 

between differentially expressed 

genes/proteins of the human host and E. coli 

proteins in BC. Also, FADD, RIPK1, 

TRADD, LRRK2, and CDC42 were 

significant in the interaction network. The 

study aimed to comprehensively investigate 

and innovate our understanding of the 

potential role of E. coli in the pathogenesis of 

BC using bioinformatics approach. 

BC is a common and widespread malignancy, 

ranking as the 10th most prevalent cancer 

worldwide.23 Most patients with BC 

(approximately 75%) are diagnosed NMIBC, 

while the remaining 25% have MIBC.24 

Apart from genetic factors, environmental 

influences, like smoking and occupational 

exposure, also significantly contribute to BC 

development.25 Bacteria, fungi, or viruses 

present in the genitourinary tract might act as 

contributing factors or cofactors in the 

development of urological tumors.26 Notably, 

E. coli is responsible for seventy percent of 

urinary tract infections, and has been 

implicated in the progression and 

advancement of BC.27  

In this study, the TNF signaling pathway 

emerges as a key link between chronic 

inflammation and cancer, being one of the 

most well-known factors associated with 

tumor necrosis. Tumor necrosis factors, a 

group of cytokines, play a role in inducing 

cell apoptosis. By activating the TNF 

inflammatory pathway, all the genes and 

downstream pathways involved in the 

process of inflammation, cell death, and 

ultimately cancer, are triggered, providing 

direct evidence of the connection between 

this infection and cancer. TNF-α can initiate 

various pathways, leading to apoptosis, cell 

survival, or inflammation. The tumor 

necrosis factor induces apoptosis by binding 

caspase-8 to FADD, while also enhancing 

inflammation and survival through TRAF2, 

JNK-dependent kinase cascade, MEKK 

kinase cascade, and NF-kB activation via the 

RIP mediator.28,29 

The subsequent key pathway is the Defective 

RIPK1-mediated Regulated Necrosis, which 

belongs to a family of protein kinase receptor 

interaction (RIP) kinases comprised of seven 

serine/threonine kinases that play a crucial 

role in cell survival and cell death signaling. 

RIP1 and RIP3 are well-known for their vital 

roles in necroptosis, programmed necrosis, 

and inflammatory cell death. Dysregulation 

of RIP kinases contributes to inflammatory 

diseases, neurological disorders, and cancer. 

In cancerous cells, changes in RIP kinases at 

different levels have been observed, acting as 

factors for tumor progression and metastasis, 

evasion of anti-tumor immune responses, and 

therapeutic resistance. However, RIP kinases 

exhibit dual functionality as either tumor 

protectors or tumor suppressors, contingent 

on the tumor types and cellular contexts 

involved. Clinical trials for inflammatory 

diseases have mainly assessed therapeutic 

agents that target RIP kinases.30,31 

Another key pathway is the TNFR1-induced 

NF-κB signaling pathway is a crucial 

inflammatory pathway activated by TNF 

through its receptor TNFR1. This pathway 

plays a significant role in cell survival and 

cell death signaling. Upon TNF binding to 

TNFR1, a trimeric complex is formed, 

leading to the recruitment of adaptor proteins 

TRADD and RIP1, followed by the 

formation of the membrane-bound receptor 

complex I involving cIAP1/2 and TRAF2. In 

the context of cancer, alterations in the 

TNFR1-induced NF-κB signaling pathway 

have been observed, impacting tumor 

progression, metastasis, and evasion of anti-

tumor immune responses. Dysregulation of 

RIP kinases, such as RIP1 and RIP3, which 

are key components of this pathway, can 

contribute to cancer development and 

therapeutic resistance. The dysregulated 

expression of these kinases has been 

observed in various cancer types, including 



urinary cancers, suggesting their potential as 

therapeutic targets.32,33 

In this study, two genes, O52302 and 

Q8XAJ5 in E. coli, showed the highest 

degree of interaction with human genes. 

O52302 (EspZ) is a type III effector protein 

secreted by pathogenic E. coli strains, 

including enterohaemorrhagic and 

enteropathogenic E. coli (EHEC and EPEC). 

The researchers demonstrated that EspZ 

interacts with host CD98, a transmembrane 

protein that is involved in amino acid 

transport and cell signaling. This finding 

suggests that the interaction between EspZ 

and CD98 is important for host cell pro-

survival signaling during E. coli infection, 

which could potentially be a factor in cancer 

development.34 

On the other hand, Q8XAJ5 (nleA/espI) is 

involved in the type III secretion system. 

NleA is a bacterial virulence factor produced 

by pathogenic bacteria such as EPEC and 

EHEC. It uses a type III secretion system to 

transfer effective proteins into the host 

cytosol. These effectors manipulate host 

pathways to improve bacterial replication and 

survival. Studies have shown that this protein 

inhibits the secretion of cellular proteins by 

disrupting the function of the mammalian 

COPII complex. Moreover, COPII is a vital 

protein complex responsible for transporting 

newly synthesized proteins and lipids from 

the endoplasmic reticulum (ER) to the Golgi 

apparatus in cells for secretion. Disruption 

and mutations in COPII can lead to human 

diseases and cancer.35 

This study for the first time, investigated the 

relation between E. coli and BC by 

bioinformatic approach and shown hot spot 

pathways and genes in patients with BC and 

E. coli infection. Further in vitro and in vivo 

studies and clinical trials are warranted to 

predict and prevent BC in patients with E. 

coli infection. While bioinformatics offers 

powerful tools for analyzing and interpreting 

large datasets, it is essential to acknowledge 

its limitations. One significant limitation is 

the reliance on in silico data, which may not 

always accurately reflect biological realities.  

Computational models and algorithms can 

provide insights into potential mechanisms 

and associations. Additionally, findings 

derived from bioinformatics analyses require 

rigorous experimental validation to confirm 

their relevance and applicability.  

In order to confirm our findings about the role 

of E. coli infection in the pathogenesis of 

bladder cancer, future research should 

prioritize both in vitro and in vivo studies. In 

vitro experiments can be performed to 

examine how E. coli infection affects host 

cell signaling pathways. The assessment may 

involve examining changes in essential 

signaling pathways, such as inflammation, 

apoptosis, and cell proliferation, in bladder 

epithelial cells exposed to E. coli. In addition, 

evaluating the physiological relevance of 

these findings requires in vivo studies using 

appropriate animal models.  

 

Conclusion 

The present study investigated the 

association between E. coli infection and BC 

development based on a comparative 

genomics interaction. It specifically focused 

on identifying hub genes and key pathways in 

BC that may be influenced by the potential 

role of E. coli in the pathogenesis of BC. The 

results of this study are based on 

bioinformatics methods and computational 

tools; therefore, this study requires in vitro 

and in vivo evaluation to confirm the 

findings. 
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Table 1. Effective and candidate genes in the interaction between human and pathogen 
Name Degree Stress Topological coefficient 

O52302 10 90 0 

Q8XAJ5 7 42 0 

B7UM99 TIR 6 208 0.259259 

Q7DB77 TIR 6 208 0.259259 

Q8XA11 5 20 0 

 

 

Table 2. Key genes obtained from human interaction network analysis 
Name Degree Stress Topological coefficient 

FADD 7 182 0.5 

RIPK1 6 130 0.537037 

TRADD 6 130 0.537037 

LRRK2 5 520 0.4 

CDC42 5 434 0.266667 

 

Table 3. Top 5 enriched biological pathways 

Term 
Adjusted P-

value 
Genes 

TNF signaling R-HSA-75893 2.30E-06 TRADD;RIPK1;TAB2;FADD;RBCK1 

Defective RIPK1-mediated regulated necrosis 

R-HSA-9693928 
5.84E-06 TRADD;RIPK1;FADD 

TNFR1-induced NFkappaB signaling 

pathway R-HSA-5357956 
5.98E-06 TRADD;RIPK1;TAB2;RBCK1 

Caspase activation via extrinsic apoptotic 

signaling pathway R-HSA-5357769 
5.98E-06 CASP9;TRADD;RIPK1;FADD 

Regulation of TNFR1 signaling R-HSA-

5357905 
1.66E-05 TRADD;RIPK1;FADD;RBCK1 

 



 
Figure 1. This figure depicts the Heatmap of selected gene expression profiles in BC. 
BC: Bladder cancer



 
Figure 2. Interaction network between host and pathogen genes. In this figure, colors ranging 

from red to yellow indicate the degree of the nodes, ranging from high to low, in terms of genes. 



 
Figure 3. Network analysis on human genes. In this figure, colors ranging from red to yellow 

indicate the degree of the nodes, ranging from high to low, in terms of genes. 
 

 

 

 


