Document Type : Review Article(s)

Authors

1 Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran

2 Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

3 Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran

Abstract

Breast and gynecological cancers are the most common malignancies in females. Early-stage detection and treatment could significantly reduce the mortality rate in patients. However, common treatments such as chemotherapy and radiotherapy fail after a while and lead to recurrence and drug resistance in cancer cells. The recent use of nanotechnology has enabled the development of novel approaches for diagnosing and treating oncological diseases. Chitosan-based polymer nanoparticles (CHPNPs) with unique properties such as non-toxicity, biocompatibility, and anti-carcinogenic effects are promising tools for the clinical development of targeted delivery systems. So far, various methods have been applied to use these nanoparticles in the diagnosis and treatment of various cancers. Identifying the most practical methods is one of the most important challenges in achieving effective treatments. A review of these studies can provide better horizons to realize effective treatment. In this review, we evaluate and discuss the use of CHPNPs from published literature to assess diagnostic and therapeutic strategies in breast and gynecological cancers, including ovarian and uterine neoplasms, as well as their advantages and challenges.

Highlights

Babak Arji Roudsari (Google Scholar)

Mitra Bakhtiary (Google Scholar)

Keywords

How to cite this article:

Arji Roudsari B, Arkan E, Jalili C, Mansouri K, Bakhtiary M. The emerging role of chitosan-based polymeric nanoparticles in the diagnosis and treatment of gynecological cancers. Middle East J Cancer. 2023;14(4):481- 97. doi: 10.30476/mejc.2023.95482.1779.

  1. Saxena SK, Nyodu R, Kumar S, Maurya VK. Current advances in nanotechnology and medicine. NanoBioMedicine: Springer Singapore. 2020.p.3-16.
  2. Sim S, Wong NK. Nanotechnology and its use in imaging and drug delivery (Review). Biomed Rep. 2021;14(5):42. doi: 10.3892/br.2021.1418.
  3. McNeil SE. Unique benefits of nanotechnology to drug delivery and diagnostics. Characterization of nanoparticles intended for drug delivery. Methods in molecular biology (Clifton, N.J.) Humana Press USA: Springer. 2011;vol. 697. p. 3-8.
  4. Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10(9):3223-30. doi: 10.1021/nl102184c.
  5. Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol. 2018;109:273-86. doi: 10.1016/j.ijbiomac.2017.12.078.
  6. Salahpour Anarjan F. Active targeting drug delivery nanocarriers: Ligands. Nano-Structures & Nano-Objects. 2019;19:100370. doi:10.1016/j.nanoso.2019.100370.
  7. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020-37. doi: 10.1016/s1734-1140(12)70901-5.
  8. Castro E, Kumar A. Nanoparticles in drug delivery systems. In: Kumar A, Mansour HM, Friedman A, editors. Nanomedicine in drug delivery. 1st ed. Boca Raton: CRC Press. 2013.p.1-22. doi:10.1201/b14802.
  9. Williford JM, Santos JL, Shyam R, Mao HQ. Shape control in engineering of polymeric nanoparticles for therapeutic delivery. Biomater Sci. 2015;3(7):894-907. doi: 10.1039/C5BM00006H.
  10. Leyva-Gómez G, Piñón-Segundo E, Mendoza-Muñoz N, Zambrano-Zaragoza ML, Mendoza-Elvira S, Quintanar-Guerrero D. Approaches in polymeric nanoparticles for vaginal drug delivery: A review of the state of the art. Int J Mol Sci. 2018;19(6):1549. doi: 10.3390/ijms19061549.
  11. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1-18. doi: 10.1016/j.colsurfb.2009.09.001.
  12. Naskar S, Koutsu K, Sharma S. Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. J Drug Target. 2019;27(4):379-93. doi: 10.1080/1061186X.2018.1512112.
  13. Grégorio C. Historical review on chitin and chitosan biopolymers. Environmental Chemistry Letters. 2019;17(4): 1623-43. doi: 10.1007/s10311-019-00901-0.
  14. El Moussaoui S, Abo-Horan I, Halbaut L, Alonso C, Coderch L, Garduño-Ramírez ML, et al. Polymeric nanoparticles and chitosan gel loading ketorolac tromethamine to alleviate pain associated with condyloma acuminata during the pre- and post-ablation. Pharmaceutics. 2021;13(11):1784. doi: 10.3390/pharmaceutics13111784.
  15. Ohya Y, Takei T, Kobayashi H, Ouchi T. Release behaviour of 5-fluorouracil from chitosan-gel microspheres immobilizing 5-fluorouracil derivative coated with polysaccharides and their cell specific recognition. J Microencapsul. 1993;10(1):1-9. doi: 10.3109/02652049309015307.
  16. Smith J, Wood E, Dornish M. Effect of chitosan on epithelial cell tight junctions. Pharm Res. 2004;21(1):43-9. doi: 10.1023/b:pham.0000012150.60180.e3.
  17. Doostan M, Maleki H, Doostan M, Khoshnevisan K, Faridi-Majidi R, Arkan E. Effective antibacterial electrospun cellulose acetate nanofibrous patches containing chitosan/erythromycin nanoparticles. Int J Biol Macromol. 2021;168:464-73. doi: 10.1016/j.ijbiomac.2020.11.174.
  18. Bravo-Osuna I, Vauthier C, Farabollini A, Palmieri GF, Ponchel G. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials. 2007;28(13):2233-43. doi: 10.1016/j.biomaterials.2007.01.005.
  19. López-García J, Lehocký M, Humpolíček P, Sáha P. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: Extent of cytotoxicity, cell viability and proliferation. J Funct Biomater. 2014;5(2):43-57. doi: 10.3390/jfb5020043.
  20. Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887-913. doi:10.1016/j.progpolymsci.2011.01.001.
  21. Mora-Huertas CE, Fessi H, Elaissari A. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods critical comparison. Adv Colloid Interface Sci. 2011;163(2):90-122. doi: 10.1016/j.cis.2011.02.005.
  22. Ghanbary K, Firouzbakhsh F, Arkan E, Mojarrab M. Chitosan polymeric nanoparticles as a carrier of thymbra spicata hydroalcoholic extract: Effect on growth parameters in rainbow trout (Oncorhynchus mykiss). Journal of Nano Research. 2022;71:29-43. doi:10.4028/www.scientific.net/jnanor.71.29.
  23. Zhao LM, Shi LE, Zhang ZL, Chen JM, Shi DD, Yang J, et al. Preparation and application of chitosan nanoparticles and nanofibers. Braz J Chem Eng. 2011;28(3):353-62. doi:10.1590/S0104-66322011000300001.
  24. Mazzotta E, De Benedittis S, Qualtieri A, Muzzalupo R. Actively targeted and redox responsive delivery of anticancer drug by chitosan nanoparticles. Pharmaceutics. 2020;12(1):26. doi:10.3390/pharmaceutics12010026.
  25. Na JH, Koo H, Lee S, Min KH, Park K, Yoo H, et al. Real-time and non-invasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models. Biomaterials. 2011;32(22):5252-61. doi:10.1016/j.biomaterials.2011.03.076.
  26. Nam T, Park S, Lee SY, Park K, Choi K, Song IC, et al. Tumor targeting chitosan nanoparticles for dual-modality optical/MR cancer imaging. Bioconjug Chem. 2010;21(4):578-82. doi: 10.1021/bc900408z.
  27. Bose T, Latawiec D, Mondal PP, Mandal S. Overview of nano-drugs characteristics for clinical application: the journey from the entry to the exit point. J Nanopart Res. 2014;16(8):1-25. doi:10.1007/s11051-014-2527-7.
  28. Ghaz-Jahanian MA, Abbaspour-Aghdam F, Anarjan N, Berenjian A, Jafarizadeh-Malmiri H. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol Biotechnol. 2015;57(3):201-18. doi: 10.1007/s12033-014-9816-3.
  29. Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther. 2020;5(1):137. doi: 10.1038/s41392-020-0199-6.
  30. Engel JB, Schally AV, Dietl J, Rieger L, Hönig A. Targeted therapy of breast and gynecological cancers with cytotoxic analogues of peptide hormones. Mol Pharm. 2007;4(5):652-8. doi: 10.1021/mp0700514.
  31. Fehm T, Beck V, Banys M, Lipp HP, Hairass M, Reinert S, et al. Bisphosphonate-induced osteonecrosis of the jaw (ONJ): Incidence and risk factors in patients with breast cancer and gynecological malignancies. Gynecol Oncol. 2009;112(3):605-9. doi: 10.1016/j.ygyno.2008.11.029.
  32. Shahverdi J, Rezaei M, Ayazi Roozbahani M, Sadeghi K, Bakhtiari M, Shahverdi M. Relationship between general health with happiness, inferiority feeling and marital conflict in Borujerd city infertile women. Advances in Nursing & Midwifery. 2016;25(90):47-54.
  33. Yusefi AA, Dahestani M, Abaspour P, Bakhtiari M, Vafaee S. Evaluation of the effectiveness of quality of life therapy (QOLT) on individual well-being and happiness of infertile women. Mediterr J Soc Sci. 2015;6(6 S6):87. doi: 10.36941/mjss.
  34. Bakhtiari M, Anamagh AN, Khayatan T, Nouri P, Asl STS. Depression, anxiety, happiness and satisfaction with life among fertile and infertile women. Int J Life Sci. 2014;8(4):10-4.doi: 10.3126/ijls.v8i4.10892.
  35. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86. doi: 10.1002/ijc.29210.
  36. Binder PS, Prat J, Mutch DG. Molecular staging of gynecological cancer: What is the future? Best Pract Res Clin Obstet Gynaecol. 2015;29(6):776-89. doi: 10.1016/j.bpobgyn.2015.01.008.
  37. Anastasi E, Gigli S, Ballesio L, Angeloni A, Manganaro L. The complementary role of imaging and tumor biomarkers in gynecological cancers: An update of the literature. Asian Pac J Cancer Prev. 2018;19(2):309-17. doi: 10.22034/APJCP.2018.19.2.309.
  38. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7-30. doi: 10.3322/caac.21590.
  39. Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384(9951):1376-88. doi: 10.1016/S0140-6736(13)62146-7.
  40. Morgan RD, Clamp AR, Jayson GC. Ovarian, fallopian tube, and primary peritoneal cancer. In: Price P, Sikora K, editors. 7th ed. Treatment of cancer. Boca Raton: CRC Press; 2020. p. 295-308. doi.org/10.1201/9780429026638.
  41. Chaurasiya S, Mishra V. Biodegradable nanoparticles as theranostics of ovarian cancer: an overview. J Pharm Pharmacol. 2018;70(4):435-49. doi: 10.1111/jphp.12860.
  42. Nossov V, Amneus M, Su F, Lang J, Janco JM, Reddy ST, et al. The early detection of ovarian cancer: from traditional methods to proteomics. Can we really do better than serum CA-125? Am J Obstet Gynecol. 2008;199(3):215-23. doi: 10.1016/j.ajog.2008.04.009.
  43. Henderson JT, Webber EM, Sawaya GF. Screening for ovarian cancer: Updated evidence report and systematic review for the US preventive services task force. JAMA. 2018;319(6):595-606. doi: 10.1001/jama.2017.21421.
  44. Asante DB, Calapre L, Ziman M, Meniawy TM, Gray ES. Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: Ready for prime time? Cancer Lett. 2020;468:59-71. doi: 10.1016/j.canlet.2019.10.014.
  45. De La Franier B, Thompson M. Detection of the ovarian cancer biomarker lysophosphatidic acid in serum. Biosensors (Basel). 202;10(2):13. doi: 10.3390/bios10020013.
  46. Rajkumar S, Polson A, Nath R, Lane G, Sayasneh A, Jakes A, et al. Prognostic implications of histological tumor regression (Böhm's score) in patients receiving neoadjuvant chemotherapy for high grade serous tubal & ovarian carcinoma. Gynecol Oncol. 2018;151(2):264-8. doi: 10.1016/j.ygyno.2018.08.042.
  47. Tarhriz V, Bandehpour M, Dastmalchi S, Ouladsahebmadarek E, Zarredar H, Eyvazi S. Overview of CD24 as a new molecular marker in ovarian cancer. J Cell Physiol. 2019;234(3):2134-42. doi: 10.1002/jcp.27581.
  48. Stope MB, Koensgen D, Burchardt M, Concin N, Zygmunt M, Mustea A. Jump in the fire--heat shock proteins and their impact on ovarian cancer therapy. Crit Rev Oncol Hematol. 2016;97:152-6. doi: 10.1016/j.critrevonc.2015.08.008.
  49. Kim PS, Djazayeri S, Zeineldin R. Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer. Gynecol Oncol. 2011;120(3):393-403. doi: 10.1016/j.ygyno.2010.11.029.
  50. Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z. Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater. 2016;2016:1087250. doi: 10.1155/2016/1087250.
  51. Vivek R, Thangam R, Kumar SR, Rejeeth C, Kumar GS, Sivasubramanian S, et al. HER2 targeted breast cancer therapy with switchable "off/on" multifunctional "Smart" magnetic polymer core-shell nanocomposites. ACS Appl Mater Interfaces. 2016;8(3):2262-79. doi: 10.1021/acsami.5b11103. Erratum in: ACS Appl Mater Interfaces. 2016;8(15):10048.
  52. Bhise K, Sau S, Alsaab H, Kashaw SK, Tekade RK, Iyer AK. Nanomedicine for cancer diagnosis and therapy: advancement, success and structure-activity relationship. Ther Deliv. 2017;8(11):1003-18. doi: 10.4155/tde-2017-0062.
  53. Bernkop-Schnürch A, Dünnhaupt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm. 2012;81(3):463-9. doi: 10.1016/j.ejpb.2012.04.007.
  54. Sánchez-Ramírez DR, Domínguez-Ríos R, Juárez J, Valdés M, Hassan N, Quintero-Ramos A, et al. Biodegradable photoresponsive nanoparticles for chemo-, photothermal- and photodynamic therapy of ovarian cancer. Mater Sci Eng C Mater Biol Appl. 2020;116:111196. doi: 10.1016/j.msec.2020.111196.
  55. Duse L, Agel MR, Pinnapireddy SR, Schäfer J, Selo MA, Ehrhardt C, et al. Photodynamic therapy of ovarian carcinoma cells with curcumin-loaded biodegradable polymeric nanoparticles. Pharmaceutics. 2019;11(6):282. doi:10.3390/pharmaceutics11060282.
  56. Samadi Pakchin P, Fathi M, Ghanbari H, Saber R, Omidi Y. A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosens Bioelectron. 2020;153:112029. doi: 10.1016/j.bios.2020.112029.
  57. Rajitha B, Malla RR, Vadde R, Kasa P, Prasad GLV, Farran B, et al. Horizons of nanotechnology applications in female specific cancers. Semin Cancer Biol. 2021;69:376-90. doi: 10.1016/j.semcancer.2019.07.005.
  58. Xu J, Liao M, Chen Y, Chen L. Novel fabrication of marizomib-loaded chitosan-coated hydroxyapatite nanocarriers as a promising system for effective treatment of ovarian cancer. Materials Research Express. 2022;9(3):035403. doi:10.1088/2053-1591/ac5077.
  59. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7-33. doi: 10.3322/caac.21654. Erratum in: CA Cancer J Clin. 2021;71(4):359.
  60. Pfeiffer RM, Webb-Vargas Y, Wheeler W, Gail MH. Proportion of U.S. trends in breast cancer incidence attributable to long-term changes in risk factor distributions. Cancer Epidemiol Biomarkers Prev. 2018;27(10):1214-22. doi: 10.1158/1055-9965.EPI-18-0098.
  61. Dai X, Xiang L, Li T, Bai Z. Cancer hallmarks, biomarkers and breast cancer molecular subtypes. J Cancer. 2016;7(10):1281-94. doi: 10.7150/jca.13141.
  62. Saraiva DP, Guadalupe Cabral M, Jacinto A, Braga S. How many diseases is triple negative breast cancer: the protagonism of the immune microenvironment. ESMO Open. 2017;2(4):e000208. doi: 10.1136/esmoopen-2017-000208.
  63. Xiong G, Stewart RL, Chen J, Gao T, Scott TL, Samayoa LM, et al. Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance. Nat Commun. 2018;9(1):4456. doi: 10.1038/s41467-018-06893-9.
  64. Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med. 2013;274(2):113-26. doi: 10.1111/joim.12084.
  65. Park CC, Mitsumori M, Nixon A, Recht A, Connolly J, Gelman R, et al. Outcome at 8 years after breast-conserving surgery and radiation therapy for invasive breast cancer: influence of margin status and systemic therapy on local recurrence. J Clin Oncol. 2000;18(8):1668-75. doi: 10.1200/JCO.2000.18.8.1668.
  66. McDonald ES, Clark AS, Tchou J, Zhang P, Freedman GM. Clinical diagnosis and management of breast cancer. J Nucl Med. 2016;57 Suppl 1:9S-16S. doi: 10.2967/jnumed.115.157834.
  67. Jiang Y, Nishikawa RM, Schmidt RA, Metz CE, Giger ML, Doi K. Improving breast cancer diagnosis with computer-aided diagnosis. Acad Radiol. 1999;6(1):22-33. doi: 10.1016/s1076-6332(99)80058-0.
  68. Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA. Physical activity and survival after breast cancer diagnosis. JAMA. 2005;293(20):2479-86. doi: 10.1001/jama.293.20.2479.
  69. Chen T, Artis F, Dubuc D, Fournié J, Poupot M, Grenier K. Microwave biosensor dedicated to the dielectric spectroscopy of a single alive biological cell in its culture medium. 2013 IEEE MTT-S International Microwave Symposium Digest (MTT); Seattle, WA, USA; 2014.p. 1-4. doi: 10.1109/MWSYM.2013.6697740.
  70. Carneiro MC, Rodrigues LR, Moreira FT, Sales MGF. Paper-based ELISA for fast CA 15–3 detection in point-of-care. Microchemical Journal. 2022;181:107756. doi:10.1016/j.microc.2022.107756.
  71. Wang L. Early diagnosis of breast cancer. Sensors. 2017;17(7):1572. doi:10.3390/s17071572.
  72. Hortobagyi GN. Treatment of breast cancer. N Engl J Med. 1998;339(14):974-84. doi: 10.1056/NEJM199810013391407.
  73. Sledge GW, Mamounas EP, Hortobagyi GN, Burstein HJ, Goodwin PJ, Wolff AC. Past, present, and future challenges in breast cancer treatment. J Clin Oncol. 2014;32(19):1979-86. doi: 10.1200/JCO.2014.55.4139.
  74. Tong CWS, Wu M, Cho WCS, To KKW. Recent advances in the treatment of breast cancer. Front Oncol. 2018;8:227. doi: 10.3389/fonc.2018.00227.
  75. Shah R, Rosso K, Nathanson SD. Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol. 2014;5(3):283-98. doi: 10.5306/wjco.v5.i3.283.
  76. Jonczyk MM, Jean J, Graham R, Chatterjee A. Surgical trends in breast cancer: a rise in novel operative treatment options over a 12 year analysis. Breast Cancer Res Treat. 2019;173(2):267-74. doi: 10.1007/s10549-018-5018-1.
  77. Murawa P, Murawa D, Adamczyk B, Połom K. Breast cancer: Actual methods of treatment and future trends. Rep Pract Oncol Radiother. 2014;19(3):165-72. doi: 10.1016/j.rpor.2013.12.003.
  78. Hennigs A, Riedel F, Gondos A, Sinn P, Schirmacher P, Marmé F, et al. Prognosis of breast cancer molecular subtypes in routine clinical care: A large prospective cohort study. BMC Cancer. 2016;16(1):734. doi: 10.1186/s12885-016-2766-3.
  79. Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288-300. doi:10.1001/jama.2018.19323.
  80. Saloustros E, Mavroudis D, Georgoulias V. Paclitaxel and docetaxel in the treatment of breast cancer. Expert Opin Pharmacother. 2008;9(15):2603-16. doi: 10.1517/14656566.9.15.2603.
  81. Jordan VC. Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br J Pharmacol. 2006;147 Suppl 1(Suppl 1):S269-76. doi: 10.1038/sj.bjp.0706399.
  82. Tran P, Lee SE, Kim DH, Pyo YC, Park JS. Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J Pharm Investig. 2020;50(3):261-70. doi:10.1007/s40005-019-00459-7.
  83. Singh SK, Singh S, Lillard JW Jr, Singh R. Drug delivery approaches for breast cancer. Int J Nanomedicine. 2017;12:6205-18. doi: 10.2147/IJN.S140325.
  84. Chen C, Liu Y, Wang H, Chen G, Wu X, Ren J, et al. Multifunctional chitosan inverse opal particles for wound healing. ACS Nano. 2018;12(10):10493-500. doi: 10.1021/acsnano.8b06237.
  85. Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104(12):6017-84. doi: 10.1021/cr030441b.
  86. Dudhani AR, Kosaraju SL. Bioadhesive chitosan nanoparticles: Preparation and characterization. Carbohydrate Polymers. 2010;81(2):243-51. doi:10.1016/j.carbpol.2010.02.026.
  87. Bozuyuk U, Dogan NO, Kizilel S. Deep insight into PEGylation of bioadhesive chitosan nanoparticles: Sensitivity study for the key parameters through artificial neural network model. ACS Appl Mater Interfaces. 2018;10(40):33945-55. doi: 10.1021/acsami.8b11178.
  88. Han HD, Mangala LS, Lee JW, Shahzad MM, Kim HS, Shen D, et al. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res. 2010;16(15):3910-22. doi: 10.1158/1078-0432.CCR-10-0005.
  89. Zhang X, He F, Xiang K, Zhang J, Xu M, Long P, et al. CD44-targeted facile enzymatic activatable chitosan nanoparticles for efficient antitumor therapy and reversal of multidrug resistance. Biomacromolecules. 2018;19(3):883-95. doi: 10.1021/acs.biomac.7b01676.
  90. Tang Y, Wu S, Lin J, Cheng L, Zhou J, Xie J, et al. Nanoparticles targeted against cryptococcal pneumonia by interactions between chitosan and its peptide ligand. Nano Lett. 2018;18(10):6207-13. doi: 10.1021/acs.nanolett.8b02229.
  91. Yadav AS, Radharani NNV, Gorain M, Bulbule A, Shetti D, Roy G, et al. RGD functionalized chitosan nanoparticle mediated targeted delivery of raloxifene selectively suppresses angiogenesis and tumor growth in breast cancer. Nanoscale. 2020;12(19):10664-84. doi:10.1039/c9nr10673a.
  92. Shakeran Z, Keyhanfar M, Varshosaz J, Sutherland DS. Biodegradable nanocarriers based on chitosan-modified mesoporous silica nanoparticles for delivery of methotrexate for application in breast cancer treatment. Mater Sci Eng C Mater Biol Appl. 2021;118:111526. doi: 10.1016/j.msec.2020.111526.
  93. Song W, Su X, Gregory DA, Li W, Cai Z, Zhao X. Magnetic alginate/chitosan nanoparticles for targeted delivery of curcumin into human breast cancer cells. Nanomaterials. 2018;8(11):907. doi:10.3390/nano8110907.
  94. Sundar S, Balega J, Crosbie E, Drake A, Edmondson R, Fotopoulou C, et al. BGCS uterine cancer guidelines: Recommendations for practice. Eur J Obstet Gynecol Reprod Biol. 2017;213:71-97. doi: 10.1016/j.ejogrb.2017.04.015.
  95. Practice Bulletin No. 149: Endometrial cancer. Obstet Gynecol. 2015;125(4):1006-26. doi: 10.1097/01.AOG.0000462977.61229.de.
  96. Sorosky JI. Endometrial cancer. Obstet Gynecol. 2012;120(2 Pt 1):383-97. doi: 10.1097/AOG.0b013e3182605bf1.
  97. Livi L, Paiar F, Shah N, Blake P, Villanucci A, Amunni G, et al. Uterine sarcoma: twenty-seven years of experience. Int J Radiat Oncol Biol Phys. 2003;57(5):1366-73. doi: 10.1016/s0360-3016(03)00750-8.
  98. Chiyoda T, Tsuda H, Tanaka H, Kataoka F, Nomura H, Nishimura S, et al. Expression profiles of carcinosarcoma of the uterine corpus-are these similar to carcinoma or sarcoma? Genes Chromosomes Cancer. 2012;51(3):229-39. doi: 10.1002/gcc.20947.
  99. Elfström KM, Arnheim-Dahlström L, von Karsa L, Dillner J. Cervical cancer screening in Europe: Quality assurance and organisation of programmes. Eur J Cancer. 2015;51(8):950-68. doi: 10.1016/j.ejca.2015.03.008.
  100. La Vecchia C, Franceschi S, Decarli A, Gallus G, Tognoni G. Risk factors for endometrial cancer at different ages. J Natl Cancer Inst. 1984;73(3):667-71.
  101. Razavi P, Pike MC, Horn-Ross PL, Templeman C, Bernstein L, Ursin G. Long-term postmenopausal hormone therapy and endometrial cancer. Cancer Epidemiol Biomarkers Prev. 2010;19(2):475-83. doi: 10.1158/1055-9965.EPI-09-0712.
  102. Trabert B, Wentzensen N, Yang HP, Sherman ME, Hollenbeck AR, Park Y, et al. Is estrogen plus progestin menopausal hormone therapy safe with respect to endometrial cancer risk? Int J Cancer. 2013;132(2):417-26. doi: 10.1002/ijc.27623.
  103. Jordan SJ, Na R, Johnatty SE, Wise LA, Adami HO, Brinton LA, et al. Breastfeeding and endometrial cancer risk: An analysis from the epidemiology of endometrial cancer consortium. Obstet Gynecol. 2017;129(6):1059-67. doi: 10.1097/AOG.0000000000002057.
  104. Albrektsen G, Heuch I, Wik E, Salvesen HB. Parity and time interval since childbirth influence survival in endometrial cancer patients. Int J Gynecol Cancer. 2009;19(4):665-9. doi: 10.1111/IGC.0b013e3181a3e1bf.
  105. Brinton LA, Felix AS, McMeekin DS, Creasman WT, Sherman ME, Mutch D, et al. Etiologic heterogeneity in endometrial cancer: evidence from a Gynecologic Oncology Group trial. Gynecol Oncol. 2013;129(2):277-84. doi: 10.1016/j.ygyno.2013.02.023.
  106. Cuzick J, Sestak I, Bonanni B, Costantino JP, Cummings S, DeCensi A, et al. Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet. 2013;381(9880):1827-34. doi: 10.1016/S0140-6736(13)60140-3.
  107. Rosen MW, Tasset J, Kobernik EK, Smith YR, Johnston C, Quint EH. Risk factors for endometrial cancer or hyperplasia in adolescents and women 25 years old or younger. J Pediatr Adolesc Gynecol. 2019;32(5):546-9. doi: 10.1016/j.jpag.2019.06.004.
  108. Ignatov A, Ortmann O. Endocrine risk factors of endometrial cancer: Polycystic ovary syndrome, oral contraceptives, infertility, tamoxifen. Cancers (Basel). 2020;12(7):1766. doi: 10.3390/cancers12071766.
  109. Lynch HT, Snyder CL, Shaw TG, Heinen CD, Hitchins MP. Milestones of Lynch syndrome: 1895-2015. Nat Rev Cancer. 2015;15(3):181-94. doi: 10.1038/nrc3878.
  110. Njoku K, Abiola J, Russell J, Crosbie EJ. Endometrial cancer prevention in high-risk women. Best Pract Res Clin Obstet Gynaecol. 2020;65:66-78. doi: 10.1016/j.bpobgyn.2019.12.005.
  111. Boggess JF, Kilgore JE, Tran A-Q. Uterine cancer. In: Niederhuber JE, Armitage JO, Kastan MB, editors. Abeloff's clinical oncology. Philadelphia: Elsevier; 2020. p. 1508-24. e4. doi:10.1016/B978-0-323-47674-4.00085-2.
  112. Singh S, Best C, Dunn S, Leyland N, Wolfman WL. No. 292-Abnormal uterine bleeding in pre-menopausal women. J Obstet Gynaecol Can. 2018;40(5):e391-e415. doi: 10.1016/j.jogc.2018.03.007.
  113. Kimura T, Kamiura S, Yamamoto T, Seino-Noda H, Ohira H, Saji F. Abnormal uterine bleeding and prognosis of endometrial cancer. Int J Gynaecol Obstet. 2004;85(2):145-50. doi: 10.1016/j.ijgo.2003.12.001.
  114. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W, et al, editors. SEER Cancer Statistics Review, 1975-2008, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2008/, based on November 2010 SEER data submission, posted to the SEER web site, 2011.
  115. Clark TJ, Mann CH, Shah N, Khan KS, Song F, Gupta JK. Accuracy of outpatient endometrial biopsy in the diagnosis of endometrial cancer: a systematic quantitative review. BJOG. 2002;109(3):313-21. doi: 10.1111/j.1471-0528.2002.01088.x.
  116. Dijkhuizen FP, Mol BW, Brölmann HA, Heintz AP. Cost-effectiveness of the use of transvaginal sonography in the evaluation of postmenopausal bleeding. Maturitas. 2003;45(4):275-82. doi: 10.1016/s0378-5122(03)00152-x.
  117. Gull B, Karlsson B, Milsom I, Granberg S. Can ultrasound replace dilation and curettage? A longitudinal evaluation of postmenopausal bleeding and transvaginal sonographic measurement of the endometrium as predictors of endometrial cancer. Am J Obstet Gynecol. 2003;188(2):401-8. doi: 10.1067/mob.2003.154.
  118. Timmermans A, Opmeer BC, Khan KS, Bachmann LM, Epstein E, Clark TJ, et al. Endometrial thickness measurement for detecting endometrial cancer in women with postmenopausal bleeding: a systematic review and meta-analysis. Obstet Gynecol. 2010;116(1):160-7. doi: 10.1097/AOG.0b013e3181e3e7e8.
  119. Jacobs I, Gentry-Maharaj A, Burnell M, Manchanda R, Singh N, Sharma A, et al. Sensitivity of transvaginal ultrasound screening for endometrial cancer in postmenopausal women: a case-control study within the UKCTOCS cohort. Lancet Oncol. 2011;12(1):38-48. doi: 10.1016/S1470-2045(10)70268-0.
  120. Amant F, Coosemans A, Debiec-Rychter M, Timmerman D, Vergote I. Clinical management of uterine sarcomas. Lancet Oncol. 2009;10(12):1188-98. doi: 10.1016/S1470-2045(09)70226-8.
  121. Clark TJ, Voit D, Gupta JK, Hyde C, Song F, Khan KS. Accuracy of hysteroscopy in the diagnosis of endometrial cancer and hyperplasia: a systematic quantitative review. JAMA. 2002;288(13):1610-21. doi: 10.1001/jama.288.13.1610.
  122. Juang CM, Yen MS, Horng HC, Twu NF, Yu HC, Hsu WL. Potential role of preoperative serum CA125 for the differential diagnosis between uterine leiomyoma and uterine leiomyosarcoma. Eur J Gynaecol Oncol. 2006;27(4):370-4.
  123. Goto A, Takeuchi S, Sugimura K, Maruo T. Usefulness of Gd-DTPA contrast-enhanced dynamic MRI and serum determination of LDH and its isozymes in the differential diagnosis of leiomyosarcoma from degenerated leiomyoma of the uterus. Int J Gynecol Cancer. 2002;12(4):354-61. doi: 10.1046/j.1525-1438.2002.01086.x.
  124. Rabinovich A. Minimally invasive surgery for endometrial cancer. Curr Opin Obstet Gynecol. 2015;27(4):302-7. doi: 10.1097/GCO.0000000000000187.
  125. Querleu D, Morrow CP. Classification of radical hysterectomy. Lancet Oncol. 2008;9(3):297-303. doi: 10.1016/S1470-2045(08)70074-3.
  126. Maxwell GL, Tian C, Risinger J, Brown CL, Rose GS, Thigpen JT, et al. Racial disparity in survival among patients with advanced/recurrent endometrial adenocarcinoma: a Gynecologic Oncology Group study. Cancer. 2006;107(9):2197-205. doi: 10.1002/cncr.22232.
  127. Liu MT, Hsu JC, Liu WS, Wang AY, Huang WT, Chang TH, et al. Prognostic factors affecting the outcome of early cervical cancer treated with radical hysterectomy and post-operative adjuvant therapy. Eur J Cancer Care (Engl). 2008;17(2):174-81. doi: 10.1111/j.1365-2354.2007.00831.x.
  128. Fader AN, Starks D, Gehrig PA, Secord AA, Frasure HE, O'Malley DM, et al. An updated clinicopathologic study of early-stage uterine papillary serous carcinoma (UPSC). Gynecol Oncol. 2009;115(2):244-8. doi: 10.1016/j.ygyno.2009.07.030.
  129. Wortman BG, Creutzberg CL, Putter H, Jürgenliemk-Schulz IM, Jobsen JJ, Lutgens LCHW, et al. Ten-year results of the PORTEC-2 trial for high-intermediate risk endometrial carcinoma: improving patient selection for adjuvant therapy. Br J Cancer. 2018;119(9):1067-74. doi: 10.1038/s41416-018-0310-8.
  130. Aghajanian C, Sill MW, Darcy KM, Greer B, McMeekin DS, Rose PG, et al. Phase II trial of bevacizumab in recurrent or persistent endometrial cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2011;29(16):2259-65. doi: 10.1200/JCO.2010.32.6397.
  131. Simpkins F, Drake R, Escobar PF, Nutter B, Rasool N, Rose PG. A phase II trial of paclitaxel, carboplatin, and bevacizumab in advanced and recurrent endometrial carcinoma (EMCA). Gynecol Oncol. 2015;136(2):240-5. doi: 10.1016/j.ygyno.2014.12.004.
  132. Wang AZ, Tepper JE. Nanotechnology in radiation oncology. J Clin Oncol. 2014;32(26):2879-85. doi: 10.1200/JCO.2014.55.0699.
  133. Hartshorn CM, Bradbury MS, Lanza GM, Nel AE, Rao J, Wang AZ, et al. Nanotechnology strategies To advance outcomes in clinical cancer care. ACS Nano. 2018;12(1):24-43. doi: 10.1021/acsnano.7b05108.
  134. Jena SK, Sangamwar AT. Polymeric micelles of amphiphilic graft copolymer of α-tocopherol succinate-g-carboxymethyl chitosan for tamoxifen delivery: Synthesis, characterization and in vivo pharmacokinetic study. Carbohydr Polym. 2016;151:1162-74. doi: 10.1016/j.carbpol.2016.06.078. Erratum in: Carbohydr Polym. 2017;157:904.
  135. Misra C, Kumar M, Sharma G, Kumar R, Singh B, Katare OP, et al. Glycinated fullerenes for tamoxifen intracellular delivery with improved anticancer activity and pharmacokinetics. Nanomedicine (Lond). 2017;12(9):1011-23. doi: 10.2217/nnm-2016-0432.
  136. Ebeid K, Meng X, Thiel KW, Do AV, Geary SM, Morris AS, et al. Synthetically lethal nanoparticles for treatment of endometrial cancer. Nat Nanotechnol. 2018;13(1):72-81. doi: 10.1038/s41565-017-0009-7.
  137. Babu A, Templeton AK, Munshi A, Ramesh R. Nanodrug delivery systems: a promising technology for detection, diagnosis, and treatment of cancer. AAPS PharmSciTech. 2014;15(3):709-21. doi: 10.1208/s12249-014-0089-8.
  138. Garg U, Chauhan S, Nagaich U, Jain N. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull. 2019;9(2):195-204. doi: 10.15171/apb.2019.023.
  139. Elbialy NS. Preparation and characterization of curcumin loaded dextrin sulfate- chitosan nanoparticles for promoting curcumin anticancer activity: Physicochemical properties of polymeric nanoparticles- curcumin. Journal of Advances in Physics. 2019;16(1):185-95. doi:10.24297/jap.v16i1.8276.
  140. Diop M, Auberval N, Viciglio A, Langlois A, Bietiger W, Mura C, et al. Design, characterisation, and bioefficiency of insulin-chitosan nanoparticles after stabilisation by freeze-drying or cross-linking. Int J Pharm. 2015;491(1-2):402-8. doi: 10.1016/j.ijpharm.2015.05.065.
  141. Xu J, Liao M, Chen Y, Chen L. Novel fabrication of marizomib-loaded chitosan-coated hydroxyapatite nanocarriers as a promising system for effective treatment of ovarian cancer. Mater Res Express. 2022;9(3):035403. doi:10.1088/2053-1591/ac5077
  142. Lee DW, Shirley SA, Lockey RF, Mohapatra SS. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Respir Res. 2006;7(1):112. doi: 10.1186/1465-9921-7-112.
  143. Yuan S, Hua J, Zhou Y, Ding Y, Hu Y. Doxorubicin loaded chitosan-W18 O49 hybrid nanoparticles for combined photothermal-chemotherapy. Macromol Biosci. 2017;17(8). doi: 10.1002/mabi.201700033.
  144. Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials. 2019;2019. doi:10.1155/2019/3702518.