Document Type : Original Article(s)

Authors

Division of Biochemistry, Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt

Abstract

Background: Currently, combination therapy has become the cornerstone of cancer treatment. The combination of different anticancer mechanisms can induce tumor cell quiescence. However, toxicity to normal tissue is the major limitation of existing combined drugs.
Method: In this experimental study, Ehrlich ascites carcinoma (EAC) inoculated into mice was targeted with just one dose of cisplatin and later doses of metformin, a safe antidiabetic drug with an anticancer effect, to maintain EAC cells in the quiescent state and secure a longer survival time without tumor recurrence.
Results: The group that underwent dual therapy developed a delayed solid tumor instead of a malignant ascites. The induction of chemo-quiescence in the EAC cells was proven by the downregulation of mechanistic target of rapamycin and the upregulation of cyclin-dependent kinase inhibitor 1 (p21) expressions. Intriguingly, the conversion of free neoplastic cells into a solid tumor was associated with a significant decrease in ΔNp63 immunostaining in EAC cells.
Conclusion: Taken together, a single dose of cisplatin followed by metformin doses could overcome the aggressiveness of malignant ascites by the conversion into a solid tumor, induction of chemo-quiescence, and the extension of survival time.

Keywords

How to cite this article:

Gebril S, Elkhawaga OA. Safe combination of cisplatin and metformin reverts the malignant ascites in a mouse model to a solid tumor by downregulation of ΔNp63 and induces tumor dormancy via mTOR/ p21 mechanism. Middle East J Cancer. 2022;13(1):43-55. doi: 10.30476/mejc.2021.86035.1321.

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi:10.3322/caac.21492.
  2. Parsons SL, Lang MW, Steele RJ. Malignant ascites: a 2-year review from a teaching hospital. Eur J Surg Oncol. 1996;22(3):237-9. doi:10.1016/s0748-7983(96)80009-6.
  3. Yap TA, Omlin A, de Bono JS. Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol. 2013;31(12):1592-605. doi:10.1200/JCO.2011.37.6418.
  4. Albain KS, Nag SM, Calderillo-Ruiz G, Jordaan JP, Llombart AC, Pluzanska A, et al. Gemcitabine plus Paclitaxel versus Paclitaxel monotherapy in patients with metastatic breast cancer and prior anthracycline treatment. J Clin Oncol. 2008;26(24):3950-7. doi:10.1200/JCO.2007.11.9362.
  5. Wang T, Narayanaswamy R, Ren H, Torchilin VP. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment. Cancer Biol Ther. 2016;17(6):698-707. doi:10.1080/15384047.2016. 1190488.
  6. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer. 2002;2(1):48-58. doi: 10.1038/nrc706.
  7. Liboiron BD, Mayer LD. Nanoscale particulate systems for multidrug delivery: towards improved combination chemotherapy. Ther Deliv. 2014;5(2):149-71. doi: 10.4155/tde.13.149.
  8. Chen W, Dong J, Haiech J, Kilhoffer MC, Zeniou M. Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells Int. 2016;2016:1740936. doi: 10.1155/2016/1740936.
  9. Chong CR, Sullivan DJ Jr. New uses for old drugs. Nature. 2007;448(7154):645-6. doi: 10.1038/448645a.
  10. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3(8):673-83. doi: 10.1038/nrd1468.
  11. Gong J, Kelekar G, Shen J, Shen J, Kaur S, Mita M. The expanding role of metformin in cancer: an update on antitumor mechanisms and clinical development. Target Oncol. 2016;11(4):447-67. doi: 10.1007/s11523-016-0423-z.
  12. Paquette M, El-Houjeiri L, Pause A. mTOR pathways in cancer and autophagy. Cancers (Basel). 2018;10(1):18. doi: 10.3390/cancers10010018.
  13. Massacesi C, Di Tomaso E, Urban P, Germa C, Quadt C, Trandafir L, et al. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. Onco Targets Ther. 2016;9:203. doi: 10.2147/OTT. S89967.
  14. Onodera Y, Nam JM, Bissell MJ. Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways. J Clin Invest. 2014;124(1):367-84. doi: 10.1172/JCI63146.
  15. Hartmann JT, Lipp HP. Toxicity of platinum compounds. Expert Opin Pharmacother. 2003; 4(6):889-901. doi: 10.1517/14656566.4.6.889.
  16. Sastry J, Kellie SJ. Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr Hematol Oncol. 2005;22(5):441-5. doi: 10.1080/08880010590964381.
  17. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer. 2002;2(1):48-58. doi: 10.1038/nrc706.
  18. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2010;2(11):2490-518. doi: 10.3390/toxins2112490.
  19. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014 ;740:364-78. doi: 10.1016/j.ejphar.2014.07.025.
  20. Agrawal SS, Saraswati S, Mathur R, Pandey M. Cytotoxic and antitumor effects of brucine on Ehrlich ascites tumor and human cancer cell line. Life Sci.2011;89(5-6):147-58. doi: 10.1016/j.lfs.2011. 05.020.
  21. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. doi: 10.1006/meth.2001.1262.
  22. Vindelov LL. Flow microfluorometric analysis of nuclear DNA in cells from solid tumors and cell suspensions. A new method for rapid isolation and straining of nuclei. Virchows Arch B Cell Pathol. 1977;24(3):227-42.
  23. Jakob S, Corazza N, Diamantis E, Kappeler A, Brunner T. Detection of apoptosis in vivo using antibodies against caspase-induced neo-epitopes. Methods. 2008;44(3):255-61. doi: 10.1016/j.ymeth.2007.11.004.
  24. Bancnoft JD. Tissue processing. In: Bancnoft JD, Stevens A, Turner DR, editors. Theory and practice of histological technique. 3rd ed. New York: Churchill Livingstone; 1996.p.83.
  25. Guo-Fang DI, Huang FF, Zui-Su YA, Di YU, Yong-Fang YA. Anticancer activity of an oligopeptide isolated from hydrolysates of Sepia ink. Chin J Nat Med. 2011;9(2):151-5. doi: 10.3724/SP.J.1009.2011.00151.
  26. Dang JH, Jin ZJ, Liu XJ, Hu D, Wang J, Luo Y, et al. Metformin in combination with cisplatin inhibits cell viability and induces apoptosis of human ovarian cancer cells by inactivating ERK 1/2. Oncol Lett. 2017;14(6):7557-64. doi: 10.3892/ol.2017.7176.
  27. Dong H, Huang J, Zheng K, Tan D, Chang Q, Gong G, et al. Metformin enhances the chemosensitivity of hepatocarcinoma cells to cisplatin through AMPK pathway. Oncol Lett. 2017;14(6):7807-12. doi: 10.3892/ol.2017.7198.
  28. Torgovnick A, Heger JM, Liaki V, Isensee J, Schmitt A, Knittel G, et al. The Cdkn1aSUPER mouse as a tool to study p53-mediated tumor suppression. Cell Rep. 2018;25(4):1027-39.e6. doi: 10.1016/j.celrep. 2018.09.079.
  29. Yip HT, Chopra R, Chakrabarti R, Veena MS, Ramamurthy B, Srivatsan ES, et al. Cisplatin-induced growth arrest of head and neck cancer cells correlates with increased expression of p16 and p53. AOHNS. 2006;132(3):317-26.
  30. Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS, et al. Metformin inhibits hepatic C1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab. 2017;25(2):463-71. doi:10.1016/j.cmet.2016. 12.009.
  31. Serrano M. Shifting senescence into quiescence by turning up p53. Cell Cycle. 2010;9(21):4256-7. doi: 10.4161/cc.9.21.13785.
  32. Sacco F, Calderone A, Castagnoli L, Cesareni G. The cell-autonomous mechanisms underlying the activity of metformin as an anticancer drug. Br J Cancer. 2016;15(12):1451-6. doi: 10.1038/bjc.2016.385.
  33. Benson EK, Mungamuri SK, Attie O, Kracikova M, Sachidanandam R, Manfredi JJ, et al. p53-dependent gene repression through p21 is mediated by recruitment of E2F4 repression complexes. Oncogene. 2014;33(30):3959-69. doi: 10.1038/onc.2013.378.
  34. Heldt FS, Barr AR, Cooper S, Bakal C, Novák B. A comprehensive model for the proliferation-quiescence decision in response to endogenous DNA damage in human cells. Proc Natl Acad Sci U S A. 2018;115(10): 2532-7. doi: 10.1073/pnas.1715345115.
  35. Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakeningfield. Nat Rev Cancer. 2014;14(9):611-22. doi: 10.1038/nrc3793.
  36. Su X, Chakravarti D, Flores ER. p63 steps into the limelight: crucial roles in the suppression of tumorigenesis and metastasis. Nat Rev Cancer. 2013;13(2):136-43. doi: 10.1038/nrc344.
  37. Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA. The ΔNp63 phosphoprotein binds the p21 and 14-3-3? promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol Cell Biol. 2003;23(7):2264-76. doi: 10.1128/MCB.23.7.2264-2276.2003.
  38. He YF, Tian DY, Yi ZJ, Yin ZK, Luo CL, Tang W, et al. Upregulation of cell adhesion through delta Np63 silencing in human 5637 bladder cancer cells. Asian J Androl. 2012;14(5):788. doi: 10.1038/aja.2012.42.
  39. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 2013;155(7):1639-51. doi: 10.1016/j.cell.2013.11.029.
  40. Davis CA, Nick HS, Agarwal A. Manganese superoxide dismutase attenuates cisplatin-induced renal injury: importance of superoxide. J Am Soc Nephrol. 2001;12(12):2683-90.
  41. Borrego A, Zamora ZB, González R, Romay C, Menéndez S, Hernández F, et al. Protection by ozone preconditioning is mediated by the antioxidant system in cisplatin-induced nephrotoxicity in rats. Mediators Inflamm. 2004;13. doi: 10.1080/096293504100016648 06.
  42. Li PD, Liu Z, Cheng TT, Luo WG, Yao J, Chen J, et al. Redox-dependent modulation of metformin contributes to enhanced sensitivity of esophageal squamous cell carcinoma to cisplatin. Oncotarget. 2017;8(37):62057. doi: 10.18632/oncotarget.18907.
  43. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8(7):579-91. doi: 10.1038/nrd2803.
  44. Eddy RJ, Weidmann MD, Sharma VP, Condeelis JS. Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Trends Cell Biol. 2017;27(8): 595-607. doi: 10.1016/j.tcb.2017.03.003.
  45. Karagiannis GS, Pastoriza JM, Wang Y, Harney AS, Entenberg D, Pignatelli J, et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci Transl Med. 2017;9(397):eaan0026. doi:10.1126/scitranslmed. aan0026.
  46. Koike A, Nakazato H, Moore GE. The fate of Ehrlich cells injected into the portal system. Cancer. 1963;16:716-20. doi: 10.1002/1097-0142(196306) 16:6<716::aid-cncr2820160605>3.0.co;2-c.