Document Type : Original Article(s)

Authors

1 Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt

2 Department of Clinical Biochemistry and Molecular Diagnostic, National Liver Institute, Menofyia University, Sebin El-Kom, Egypt

3 Department of Clinical Pathology, Faculty of Medicine, Menofyia University, Sebin El-Kom, Egypt

4 Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt

Abstract

Background: Colorectal cancer (CRC), caused by abnormal cells growing in the colon or rectum, has a high mortality rate worldwide. On the other hand, microRNAs are small non-coding RNAs that contain approximately 22 nucleotides in length. They are upregulated in a wide range of human cancers such as CRC. MiRNA-21 post-transcriptionally regulates the expression of many tumor suppressor genes such as P53 gene. This indicates that miRNA-21 interacts like oncogenes and is required for CRC development.
Method: The current original study was conducted in the National Liver Institute, Menofyia University, Egypt. We collected a total of 40 blood samples from CRC patients 40 samples from healthy individuals who served as controls. Quantitative real-time PCR detected the levels of miRNA-21 and the fold changes of phosphates-tensin homology (PTEN) gene expression, as a tumor suppressor gene, in blood samples.
Results: The expression levels of miR-21 were upregulated in all obtained samples from patients with CRC in association with aging, gender, and tumor-node-metastasis staging. Furthermore, patients with poor and well-differentiated CRC revealed reduced levels of PTEN gene expression. We observed a putative binding site of miR-21 in PTEN gene sequences. This indicates the direct cleavage between miR-21 and PTEN coding sequence. Prediction analysis for other potential targets identified several malignancy factors and tumor suppressor genes with putative seeding regions for miR-21 such as STAT3, transforming growth factor-beta, tumor necrosis factor-α (TNF-α), and programmed cell death CD4.
Conclusion: The current data exhibited the potential dual role of hsa-miR-21 in regulating cancer progression and showed that hsa-miR-21 is an efficacious biomarker for CRC d evelopment and an attractive candidate for CRC treatment during early transformation.

Keywords

How to cite this article:

Maher E, Gedawy G, Fathy W, Farouk S, Maksoud AA, Guirgis AA, et al. Hsa-miR-21-mediated cell death and tumor metastases: A potential dual response during colorectal cancer development. Middle East J Cancer. 2020;11(4): 483-92. doi: 10.30476/mejc.2020. 83146.1139.

1.        Durko L, Malecka-Panas E. Lifestyle modifications and colorectal cancer. Curr Colorectal Cancer Rep. 2014;10:45-54.
2.        Simonian M, Khosravi S, Mortazavi D, Bagheri H, Salehi R, Hassanzadeh A, et al. Environmental risk factors associated with sporadic colorectal cancer in Isfahan, Iran. Middle East J Cancer. 2018;9(4), 318-22.
3.        Gandomani H, Yousefi SM, Aghajani M, Mohammadian-Hafshejani A, Tarazoj A, Pouyesh V, et al. Colorectal cancer in the world: incidence, mortality and risk factors. Biomed Res Ther. 2017,4(10):1656–75.
4.        Lorestani S,  Hashemy SI, Mojarad M, Keyvanloo Shahrestanaki M, Bahari A, Asadi M, et al. Increased glutathione reductase expression and activity in colorectal cancer tissue samples: An investigational study in Mashhad, Iran. Middle East J Cancer. 2018;9(2), 99-104.
5.        Ibrahim AS, Khaled HM, Mikhail NN, Baraka H, Kamel H. Cancer incidence in Egypt: results of the national population-based cancer registry program. J Cancer Epidemiol. 2014;2014:437971.
6.        Kim ER, Chang DK. Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J Gastroenterol. 2014;20(29):9872-81. doi: 10.3748/wjg.v20.i29.9872.
7.        Stracci F, Zorzi M, Grazzini G. Colorectal cancer screening: Tests, strategies, and perspectives. Front Public Heal. 2014;2: 210.
8.        Zygulska AL, Furgala A, Krzemieniecki K, Wlodarczyk B,Thor P. Autonomic dysregulation in colon cancer patients. Cancer Invest. 2018;36:255–63.
9.        Islam SMA, Patel R, Acevedo-Duncan M. Protein Kinase C-ζ stimulates colorectal cancer cell carcinogenesis via PKC-ζ/Rac1/Pak1/β-Catenin signaling cascade. Biochim Biophys Acta Mol Cell Res. 2018;1865(4):650-664. doi:10.1016/j.bbamcr.2018.02.002.
10.      Asho KP, Thomas D, Kalaviani K, Vadivel D, Bakthavatchalam V, Ganapasam S. Colorectal carcinogenesis: Insights into the cell death and signal transduction pathways: A review. World J Gastrointest Oncol. 2018;10(9),244-59.
11.      Buhmeida A, Assidi M, Al-Maghrabi J, Dallol A, Sibiany A, Al-Ahwal M, et al. Membranous or Cytoplasmic HER2 Expression in Colorectal Carcinoma: Evaluation of Prognostic Value Using Both IHC & BDISH. Cancer Invest. 2018;36(2):129-140. doi:10.1080/07357907.2018.1439054.
12.   MaksoudAI, Taher RF, Gaara AH, Abdelrazik E, Gaara AH,  et al. Selective regulation of B- Raf dependent K-Ras/mitogen-activated protein by natural occurring multi-kinase inhibitors in cancer cells. Front Oncol. 2019; 01220. doi: 10.3389/fonc.2019.01220.
13.      Mehlen P, Fearon ER. Role of the dependence receptor DCC in colorectal cancer pathogenesis. J Clin Oncol. 2004;22(16):3420-8.
14.      Grady WM. Transforming growth factor -β signaling in colorectal cancer. Curr. Colorectal Cancer Rep. 2007;3:65-70.
15.      Kaufman EJ, Miska EA. The microRNAs of Caenorhabditis elegans. Semin Cell Dev Biol. 2010;21(7):728-37. doi: 10.1016/j.semcdb.2010.07.001.
16.      Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257-61.
17.      Zhu S, Wu H, Wu F, Nile D, Sheng S, Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res.2008;18(3),350-9.
18.      Khalil H, Abd El Maksoud AI, Alian A, El-Hamady WA, Daif AA, Awad AM, et al. Interruption of autophagosome formation in cardiovascular disease, an evidence for protective response of autophagy. Immunol Invest. 2019:1-15.doi: 10.1080/08820139.2019.1635619.
19.      Khalil H, Arfa M, El-Masrey S, El-Sherbini SM, Abd-Elaziz AA. Single nucleotide polymorphisms of interleukins associated with hepatitis C virus infection in Egypt. J Infect Dev Ctries. 2017;11(3):261-268. doi:10.3855/jidc.8127.
20.      Khalil H, Abd El Maksoud AI, Roshdey T, El-Masry S. Guava flavonoid glycosides prevent influenza A virus infection via rescue of P53 activity. J Med Virol. 2019;91(1):45-55. doi: 10.1002/jmv.25295.
21.      Farghaly H., Guirgis A, Khalil H. Heat shock reduces HCV replication via regulation of ribosomal L22 in Alu-RNA molecule dependent manner. Hepatoma Res. 2018;4:41.
22.      Salehi Z, Akrami H, Sisakhtnezhad S. The effect of placenta growth factor knockdown on hsa-miR-22-3p, hsa-let-7b-3p, hsa-miR-451b, and hsa-mir-4290 expressions in MKN-45- derived gastric cancer stem-like cells. Middle East J Cancer. 2018; 9:113-22.
23.      Khalil H. Influenza A virus stimulates autophagy to undermine host cell IFN-β production. Egypt J Biochem Mol Biol. 2012;30: 283-99.
24.      Khalil H, El Malah T, El Maksoud AIA, El Halfawy I, El Rashedy AA, El Hefnawy M. identification of novel and efficacious chemical compounds that disturb influenza a virus entry in vitro. Front Cell Infect Microbiol. 2017;7:304.doi: 10.3389/fcimb.2017.00304.
25.  Abd El Maksoud AI, Elebedeey D, Abass NH, Awad AM, Naser GM, Roshdy T et al. Methylomic changes of autophagy-related genes by Legionella effector Lpg2936 in infected macrophages. Front Cell Dev Biol. 2019; 7(390):1-16. doi: 10.3389/fcell.2019.00390.
26.      Levy DE, Lee CK. What does Stat3 do? J Clin Invest. 2002;109(9):1143-8.
27.       Tscherner A, Brown AC, Stalker L, Kao J, Dufort I, Sirard MA, et al. STAT3 signaling stimulates miR-21 expression in bovine cumulus cells during in vitro oocyte maturation. Sci Rep. 2018;8(1):11527. doi:10.1038/s41598-018-29874-w.
28.      Cao Q, Li YY, He WF, Zhang ZZ, Zhou Q, Liu X, et al. Interplay between microRNAs and the STAT3 signaling pathway in human cancers. Physiol Genomics. 2013;45(24):1206-14. doi: 10.1152/physiolgenomics.00122.2013.
29.      Zhang C, Liu K, Li T, Fang J, Ding Y, Sun L, et al. miR-21: A gene of dual regulation in breast cancer. Int J Oncol. 2016;48(1):161-72.