Document Type : Review Article(s)

Authors

College of Pharmacy and Medical Sciences, Hebron University, Hebron, Palestine

Abstract

Thyroid cancer is highly common all around the world. Its prevalence has rapidly increased over the last 30 years in the United States and other developing countries. Fine-needle aspiration biopsy has become the cornerstone of thyroid nodule diagnosis, whose general reliability is outstanding; however, some aspirates have shown undetermined cytological findings that do not provide a definitive malignancy diagnosis. At least 70 molecular and genetic markers in thyroid nodules have been analyzed in an effort to identify molecular markers to differentiate malignant and benign (BN) thyroid nodules. The present review focused on the currently used markers in thyroid cancer diagnosis. A rising number of studies have investigated immunohistochemical markers, such as galectin-3 (GAL3), cytokeratin 19 (CK19), hector battifora mesothelial- 1 (HBME-1), and thyroid peroxidase, along with DNA alterations, including mainly BRAF (B-Raf proto-oncogene, serine/threonine kinase) and RAS (Ras proto-oncogene, GTPase) point mutations, Telomerase reverse transcriptase mutations, ret protooncogene/ papillary thyroid carcinoma and PAX8/PPARG rearrangements, and miRNA signatures and circulating tumor cells for thyroid cancer diagnosis. Although certain markers are promising for differential diagnosis, due to limitations of the substantial prevalence of BN thyroid tumors, none of them is specifically definitive to a large extent. Herein, we also discussed the studies that have supported the use of combinations of several markers, like KIT, TC1, miR-222, and miR-146b combination, as well as GAL3, CK19, and HBME-1 combination, in enhancing the diagnostic accuracy in differentiating malignant and BN tumors.

Keywords

How to cite this article:

Hejaz HA, Abuzaina I, Aldeen RN, Saad S. Currently used and new molecular markers for thyroid cancer diagnosis. Middle East J Cancer. 2022;13(2):193-215. doi: 10.30476/mejc.2022. 87060.1392.

  1. Shah JP. Thyroid carcinoma: epidemiology, histology, and diagnosis. Clin Adv Hematol Oncol. 2015;13(4Suppl 4):3-6.
  2. Nikiforov YE. Radiation-induced thyroid cancer: whatwe have learned from chernobyl. Endocr Pathol. 2006;17(4):307-17. doi:10.1007/s12022-006-0001-5.
  3. Vaccarella S, Franceschi S, Bray F, Wild CP, Plummer M, Dal Maso L. Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N Engl J Med. 2016;375(7):614-7. doi:10.1056/NEJMp1604412.
  4. Davies L, Ouellette M, Hunter M, Welch HG. The increasing incidence of small thyroid cancers: where are the cases coming from? Laryngoscope. 2010;120(12):2446-51. doi:10.1002/lary.21076.
  5. Gilliland FD, HuntWC, Morris DM, Key CR. Prognostic factors for thyroid carcinoma. A populationbased study of 15,698 cases from the surveillance, epidemiology, and end results (Seer) program 1973-1991. Cancer. 1997;79:564-73. doi:10.1002/(sici)1097
    -0142(19970201)79:3<564::aid-cncr20>3.0.co;2-0.
  6. Liu FC, Lin HT, Lin SF, Kuo CF, Chung TT, Yu HP. Nationwide cohort study on the epidemiology and survival outcomes of thyroid cancer. Oncotarget. 2017;8:78429. doi:10.18632/oncotarget.19488.
  7. Hsiao SJ, Nikiforov YE. Molecular approaches to thyroid cancer diagnosis. Endocr Relat Cancer. 2014;21(5):T301-T313. doi:10.1530/ERC-14-0166.
  8. Panebianco F, Mazzanti C, Tomei S, Aretini P, Franceschi S, Lessi F, et al. The combination of four molecular markers improves thyroid cancer cytologic diagnosis and patient management. BMC Cancer. 2015;15:918. doi: 10.1186/s12885-015-1917-2.
  9. Wei S, Veloski C, Sharda P, Ehya H. Performance of the afirma genomic sequencing classifier versus gene expression classifier: An institutional experience. Cancer Cytopathol. 2019;127:720-4. doi:10.1002/cncy.22188.
  10. Van Veelen W, De Groot JWB, Acton DS, Hofstra RMW, Höppener JWM, Links TP, et al. Medullary thyroid carcinoma and biomarkers: past, present, and future. J Intern Med. 2009;266:126-40. doi: 10.1111/j.1365-2796.2009.02106.x.
  11. Carpi A, Mechanick JI, Saussez S, Nicolini A. Thyroid tumor marker genomics and proteomics: diagnostic and clinical implications. J Cell Physiol. 2010;224(3):612-9. https://doi.org/10.1002/ jcp.22187.
  12. Huang LY, Lee YL, Chou P, Chiu WY, Chu D. Thyroid fine-needle aspiration biopsy and thyroid cancer diagnosis: a nationwide population-based study. Plos One. 2015;10(5):E0127354. doi:10.1371/ journal.pone.0127354.
  13. Ha EJ, Na DG, Baek JH, Sung JY, Kim JH, Kang, SY. Us fine-needle aspiration biopsy for thyroid malignancy: diagnostic performance of seven society guidelines applied to 2000 thyroid nodules. Radiology. 2018;287(3):893-900. doi: 10.1148/radiol.2018171074.
  14. Han LO, Li XY, Cao MM, Cao Y, Zhou LH. Development and validation of an individualized diagnostic signature in thyroid cancer. Cancer Med. 2018;7(4):1135-40. doi: 10.1002/cam4.1397.
  15. Paschke R, Cantara S, Crescenzi A, Jarzab B, Musholt TJ, Sobrinho Simoes M. European Thyroid Association Guidelines regarding thyroid nodule molecular fine needle
    aspiration cytology diagnostics. Eur Thyroid J. 2017;6(3):115-29. doi: 10.1159/000468519.
  16. Singh ON, Iñiguez-Ariza NM, Castro MR. Thyroid nodules: diagnostic evaluation based on thyroid cancer risk assessment. BMJ. 2020;7;368:l6670. doi:10.1136/bmj.l6670.
  17. Feldkamp J, Führer D, Luster M, Musholt TJ, Spitzweg C, Schott M. Fine needle aspiration in the investigation of thyroid nodules. Dtsch Arztebl Int. 2016;113:353–
    9. doi: 10.3238/arztebl.2016.0353.
  18. Choi SH, Han KH, Yoon JH, Moon HJ, Son EJ, Youk JH, et al. Factors affecting inadequate sampling of ultrasound-guided fine-needle aspiration biopsy of thyroid nodules. Clin Endocrinol (Oxf). 2011;74(6): 776-82. doi: 10.1111/j.1365-2265.2011.04011.x.
  19. Walker KA. Rate of inadequate sampling in thyroid fine needle aspiration biopsy. endocrineweb for health professionals. [Internet] (Accessed date: May 1 2020).
    Available at: https://www.endocrineweb.com/professional/research-updates/thyroid-disorders/rateinadequate-sampling-thyroid-fine-needle-aspirat
  20. Boufraqech M, Klubo-Gwiezdzinska J, Kebebew EMD. MicroRNAs in the thyroid. Best Pract Res Clin Endocrinol Metab. 2016;30(5):603-19. doi: 10.1016/j.beem.2016.10.001.
  21. Liu M, Ruan M, Chen L. Update on the molecular diagnosis and targeted therapy of thyroid cancer. Med Oncol. 2014;31:973. doi: 10.1007/s12032-014-0973-9.
  22. Vriens MR, Schreinemakers JM, Suh I, Guerrero MA, Clark OH. Diagnostic markers and prognostic factors in thyroid cancer. Future Oncol. 2009;5(8):1283-93. doi: 10.2217/fon.09.85.
  23. Géraldine D, Sven S, Fabrice J. Current and future markers for the diagnosis of thyroid cancer. Clin Oncol Res. 2019;2(3):3-4. doi: 10.31487/j.COR.2019.03.07.
  24. Hsiao SJ, Nikiforov YE. Molecular genetics and diagnostics of thyroid cancer. Springer International Publishing AG, part of Springer Nature 2019. Luster M, et al., editors. The thyroid and its diseases: A comprehensive guide for the clinician. Thyroid Cancer.
    2019;(Part viii):549-562. doi:10.1007/978-3-319-72102-6_36.
  25. Khatami F, Tavangar S. Review of driver genetic alterations in thyroid cancers. Iran J Pathol. 2018;13(2):125-35.
  26. Yip L. Molecular markers for thyroid cancer diagnosis, prognosis, and targeted therapy. J Surg Oncol. 2015;111(1):43-50. doi: 10.1002/jso.23768.
  27. Cabanillas MED, Mcfadden, DG, Durante, C. Thyroid cancer. Lancet. 2016;388:2783-95. doi: 10.1016/S0140-6736(16)30172-6.
  28. Aggarwal N, Swerdlow SH, Kelly LM, Ogilvie JB, Nikiforova MN, Sathanoori M, et al. Thyroid carcinoma-associated genetic mutations also occur in thyroid lymphomas. Mod Pathol. 2012;25(9):1203-11. doi: 10.1038/modpathol.2012.73.
  29. Jin S, Borkhuu O, Bao W, Yang YT. Signaling pathways in thyroid cancer and their therapeutic implications. J Clin Med Res. 2016;8(4):284-96. doi:10.14740/jocmr2480w.
  30. Robbins HL, Hague A. The Pi3k/Akt pathway in tumors of endocrine tissues. Front Endocrinol (Lausanne). 2015;6:188. doi: 10.3389/fendo.2015.00188.
  31. Leonardi GC, Candido S, Carbone M, Raiti F, Colaianni V, Garozzo S, et al. BRAF mutations in papillary thyroid carcinoma and emerging targeted therapies (review). Mol Med Rep. 2012;6(4):687-94. doi: 10.3892/mmr.2012.1016.
  32. Fagin JA, Wells JSA. Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 2016;375(11):1054-67. doi: 10.1056/NEJMra1501993.
  33. Cherkaoui GS, Guensi A, Taleb S, Idir MA, Touil N, Benmoussa R, et al. Poorly differentiated thyroid carcinoma: a retrospective clinicopathological study. Pan Afr Med J. 20152;21:137. doi: 10.11604/pamj.2015.21.137.6720.
  34. Araque KA, Gubbi S, Klubo-Gwiezdzinska J. Updates on the management of thyroid cancer. Horm Metab Res. 2020;52(8):562-77. doi:10.1055/a-1089-7870.
  35. Pemayun TG. Current diagnosis and management of thyroid nodules. Acta Med Indones. 2016;48(3):247-57.
  36. Musholt TJ, Fottner C, Weber MM, Eichhorn W, Pohlenz J, Musholt PB, et al. Detection of papillary thyroid carcinoma by analysis of Braf and Ret/Ptc1 mutations in fine-needle aspiration biopsies of thyroid nodules. World J Surg. 2010;34(11):2595-603. doi:
    10.1007/s00268-010-0729-4.
  37. Eszlinger M, Paschke R. Molecular fine-needle aspiration biopsy diagnosis of thyroid nodules by tumor specific mutations and gene expression patterns. Mol Cell Endocrinol. 2010;322(1-2):29-37. doi: 10.1016/j.mce.2010.01.010.
  38. Marx SJ. Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nat Rev Cancer. 2005;5:367-75. doi: 10.1038/nrc1610.
  39. Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C, et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol
    Metab. 2001;86(12):5658-71. doi: 10.1210/jcem.86.12.8070.
  40. Traugott A, Moley JF. Medullary thyroid cancer: medical management and follow-up. Curr Treat Options Oncol. 2005;6:339-46. doi: 10.1007/s11864-005-0037-7.
  41. Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ, et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive
    oncogenic mutations in RET and RAS. J Clin Endocrinol Metab. 2013;98(2):E364-9. doi:
    10.1210/jc.2012-2703.
  42. Eng C, Smith DP, Mulligan LM, Nagai MA, Healey CS, Ponder MA, et al. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum Mol Genet. 1994;3(2):237-41. doi: 10.1093/hmg/3.2.237. Erratum in: Hum Mol Genet. 1994;3(4):686.
  43. De Groot JWB, Links TP, Plukker JTM, Lips CJM, Hofstra RMW. Ret as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr Rev. 2006;27(5):535-60. doi: 10.1210/er.2006-0017.
  44. Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, et al. Dabrafenib and Trametinib treatment in patients with locally advanced
    or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol. 2018;36(1):7-13. doi: 10.1200/JCO.2017.73.6785.
  45. Smallridge RC, Ain KB, Asa SL, Bible KC, Brierley JD, Burman KD, et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid. 2012;22(11):1104-39. doi:10.1089/thy.2012.0302.
  46. Kane SV, Sharma TP. Cytologic diagnostic approach to poorly differentiated thyroid carcinoma: a single?institution study. Cancer Cytopathol. 2015;123(2):82-91. doi: 10.1002/cncy.21500.
  47. Juhlin CC. A clinical overview of telomerase-associated aberrancies in follicular thyroid tumors as diagnostic and prognostic markers: Tert alert. Scand J Surg. 2020;109(3):187-92. doi: 10.1177/1457496919850434.
  48. Penna GC, Vaisman F, Vaisman M, Sobrinho-Simoes M, Soares P. Molecular markers involved in tumorigenesis of thyroid carcinoma: focus on aggressive histotypes. Cytogenet Genome Res. 2016;150:194-207. doi: 10.1159/000456576.
  49. Liu R, Xing M. Diagnostic, and prognostic tert promoter mutations in thyroid fine-needle aspiration biopsy. Endocr Relat Cancer. 2014;21(5):825-30. doi:10.1530/ERC-14-0359.
  50. Liu R, Xing M. Tert promoter mutations in thyroid cancer. Endocr Relat Cancer. 2016;23(3):R143-R155. doi: 10.1530/ERC-15-0533.
  51. Borowczyk M, Szczepanek-Parulska E, Olejarz M, Więckowska B, Verburg FA, Dębicki S, et al. Evaluation of 167 gene expression classifier (GEC) and ThyroSeq v2 diagnostic accuracy in the preoperative assessment of indeterminate thyroid nodules: Bivariate/HROC meta-analysis. Endocr Pathol. 2019;30(1):8-15. doi: 10.1007/s12022-018-9560-5.
  52. Haugen BR. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: What is new and what has changed? Cancer. 2017;123(3):372-81. doi: 10.1002/cncr.30360.
  53. Sahli ZT, Smith PW, Umbricht CB, Zeiger MA. Preoperative molecular markers in thyroid nodules. Front Endocrinol (Lausanne). 2018;9:179. doi:10.3389/fendo.2018.00179.
  54. San Martin VT, Lawrence L, Bena J, Madhun NZ, Berber E, Elsheikh TM, et al. Real-world comparison of afirma gec and gsc for the assessment of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2020;105(9):dgaa322. doi:10.1210/clinem/dgaa322.
  55. Taye A, Gurciullo D, Miles BA, Gupta A, Owen RP, Inabnet 3rd WB, et al. Clinical performance of a nextgeneration sequencing assay (Thyroseq V2) in the evaluation of indeterminate thyroid nodules. Surgery. 2108;163(1):97-103. doi: 10.1016/j.surg.2017.07.032.
  56. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious
    for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120(23):3627-34. doi: 10.1002/cncr.29038.
  57. Valderrabano P, Khazai L, Leon ME, Thompson ZJ, Ma Z, Chung CH, et al. Evaluation of ThyroSeq v2 performance in thyroid nodules with indeterminate cytology. Endocr Relat Cancer. 2017;24(3):127-36. doi: 10.1530/ERC-16-0512.
  58. Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer. 2018;124(8):1682-90. doi:10.1002/cncr.31245.
  59. Ohori NP, Landau MS, Carty SE, Yip L, LeBeau SO, Manroa P, et al. Benign call rate and molecular test result distribution of ThyroSeq v3. Cancer Cytopathol. 2019;127(3):161-8. doi: 10.1002/cncy.22088.
  60. Pishkari S, Paryan M, Hashemi M, Baldini E, Mohammadi-Yeganeh S. The role of microRNAs in different types of thyroid carcinoma: A comprehensive analysis to find new miRNA supplementary therapies. J Endocrinol Invest. 2018;41(3):269-83. doi:
    10.1007/s40618-017-0735-6.
  61. Castagna MG, Marzocchi C, Pilli T, Forleo R, Pacini F, Cantara S. MicroRNA expression profile of thyroid nodules in fine-needle aspiration cytology: A
    confirmatory series. J Endocrinol Invest. 2019;42(1):97-100. doi: 10.1007/s40618-018-0880-6.
  62. Abdullah MI, Junit SM, Ng KL, Jayapalan JJ, Karikalan B, Hashim OH. Papillary thyroid cancer: Genetic alterations and molecular biomarker investigations. Int J Med Sci. 2019;16(3):450-60. doi:10.7150/ijms.29935.
  63. Jing W, Li X, Peng R, LvS, Zhang Y, Cao Z, et al. The diagnostic and prognostic significance of long noncoding RNAs expression in thyroid cancer: A
    systematic review and meta-analysis. Pathol Res Pract. 2018;214(3):327-34. doi: 10.1016/j.prp. 2018.01.008.
  64. Chou CK, Chen RF, Chou FF, Chang HW, Chen YJ, Lee YF, et al. miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. Thyroid. 2010;20(5):489-
    94. doi: 10.1089/thy.2009.0027.
  65. Bommarito A, Richiusa P, Carissimi E, Pizzolanti G, Rodolico V, Zito G, et al. BRAFV600E mutation, TIMP-1 upregulation, and NF-κB activation: closing
    the loop on the papillary thyroid cancer trilogy. Endocr Relat Cancer. 2011;18(6):669-85. doi: 10.1530/ERC-11-0076.
  66. Pacifico F, Leonardi A. Role of Nf-KappaB in thyroid cancer. Mol Cell Endocrinol. 2010;321(1):29-35. doi: 10.1016/j.mce.2009.10.010.
  67. Simon D, Körber C, Krausch M, Segering J, Groth P, Görges R, et al. Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer: final results
    of a pilot study. Eur J Nucl Med Mol Imaging. 2002;29(6):775-82. doi: 10.1007/s00259-001-0737-6.
  68. Schwertheim S, Sheu SY, Worm K, Grabellus F, Schmid KW. Analysis of deregulated miRNAs is helpful to distinguish poorly differentiated thyroid carcinoma from papillary thyroid carcinoma. Horm Metab Res. 2009;41(6):475-81. doi: 10.1055/s-0029-1215593.
  69. Li D, Jian W, Wei C, Song H, Gu Y, Luo Y, et al. Down-regulation of miR-181b promotes apoptosis by targeting Cyld in thyroid papillary cancer. Int J Clin Exp Pathol. 2014;7 (11):7672-80.
  70. Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006;13(2):497-508. doi: 10.1677/erc.1.01209.
  71. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676-90. doi: 10.1016/j.cell.2014.09.050.
  72. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd, Tallini G, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88(5):2318-26. doi: 10.1210/jc.2002-021907.
  73. Nikiforov YE. Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol. 2008;21,(Suppl2):S37-43. doi: 10.1038/modpathol.2008.10.
  74. Sun D, Han S, Liu C, Zhou R, Sun W, Zhang Z, et al. Microrna-199a-5p Functions as a tumor suppressor via suppressing connective tissue growth factor (CTGF) in follicular thyroid carcinoma. Med Sci Monit. 2016;22:1210-7. doi: 10.12659/msm.895788.
  75. Wojtas B, Ferraz C, Stokowy T, Hauptmann S, Lange D, Dralle H, et al. Differential miRNA expression defines migration and reduced apoptosis in follicular thyroid carcinomas. Mol Cell Endocrinol. 2014;388(1-2):1-9. doi: 10.1016/j.mce.2014.02.011.
  76. Ain KB. Anaplastic thyroid carcinoma: behavior, biology, and therapeutic approaches. Thyroid. 1998;8(8):715-26. doi:10.1089/thy.1998.8.715.
  77. Keutgen XM, Sadowski SM, Kebebew E. Management of anaplastic thyroid cancer. Gland Surg. 2015;4(1):44-51. doi: 10.3978/j.issn.2227-684X.2014.12.02.
  78. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 2011;13(3):317-23. doi:10.1038/ncb2173. Erratum in: Nat Cell Biol. 2011;13(12):1466. Erratum in: Nat Cell Biol. 2011;13(12):1467.
  79. Braun J, Hoang-Vu C, Dralle H, Huttelmaier S. Oncogene. 2010;29(29):4237-44. doi: c10.1038/onc.2010.169.
  80. Fuziwara CS, Kimura ET. MicroRNA deregulation in anaplastic thyroid cancer biology. Int J Endocrinol. 2014;743450. doi: 10.1155/2014/743450.
  81. Duan L, Hao X, Liu Z, Zhang Y, Zhang, G. MiR-129-5p is down-regulated and involved in the growth, apoptosis, and migration of medullary thyroid carcinoma cells through targeting Ret. Febs Lett. 2014;588(9):1644-51. doi: 10.1016/j.febslet.2014.03.002.
  82. Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature. 1994;367(6461):375-6. doi: 10.1038/367375a0.
  83. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141(5):672-5. doi: 10.1111/j.1365-2141.2008.07077.x.
  84. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513-8. doi: 10.1073/pnas.0804549105.
  85. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101(10):2087-92. doi:10.1111/j.1349-7006.2010.01650.x.
  86. Lee JC, Zhao JT, Clifton-Bligh RJ, Gill A, Gundara JS, Ip JC, et al. MicroRNA-222 and microRNA-146b are tissue and circulating biomarkers of recurrent papillary thyroid cancer. Cancer. 2013;119(24):4358-65. doi: 10.1002/cncr.28254.
  87. Lee YS, Lim YS, Lee JC, Wang SG, Park HY, Kim SY, et al. Differential expression levels of plasmaderived miR-146b and miR-155 in papillary thyroid cancer. Oral Oncol. 2015;51(1):77-83. doi: 10.1016/j.oraloncology.2014.10.006.
  88. Li M, Song Q, Li H, Lou Y, Wang L. Correction: circulating miR-25-3p and miR-451a may be potential biomarkers for the diagnosis of papillary thyroid carcinoma. PLoS One. 2015;10(8):E0135549. doi:10.1371/journal.pone.0135549.
  89. Gómez Sáez JM. Diagnostic usefulness of tumor markers in the thyroid cytological samples extracted by fine-needle aspiration biopsy. Endocr Metab Immune Disord Drug Targets. 2010;10(1):47-56. doi:10.2174/187153010790828000.
  90. Murugan AK, Munirajan AK, Alzahrani AS. Long noncoding RNAs: emerging players in thyroid cancer pathogenesis. Endocr Relat Cancer. 2018;25(2):R59-R82.doi:10.1530/ERC-17-0188.
  91. Tano K, Akimitsu N. Long non-coding RNAs in cancer progression. Front Genet. 2012;3:219. doi: 10.3389/fgene.2012.00219.
  92. Wang X, Lu X, Geng Z, Yang G, Shi Y. LncRNA Ptcsc3/miR-574-5p governs cell proliferation and migration of papillary thyroid carcinoma via Wnt/βcatenin signaling. J Cell Biochem. 2017;118(12):4745-52. doi: 10.1002/jcb.26142.
  93. Zhang R, Hardin H, Huang W, Chen J, Asioli S, Righi A, et al. Lloyd RV. Malat1 long non-coding RNA expression in thyroid tissues: analysis by in situ hybridization and real-time Pcr. Endocr Pathol. 2017;28(1):7-12. doi: 10.1007/s12022-016-9453-4.
  94. Chakravarty D, Sboner A, Nair SS, Giannopoulou E, Li R, Hennig S, et al. The oestrogen receptor alpharegulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun. 2014;5:5383. doi:10.1038/ncomms6383.
  95. Kim YK, Ha HH, Lee JS, Bi X, Ahn YH, Hajar S, et al. Control of muscle differentiation by a mitochondriatargeted fluorophore. J Am Chem Soc. 2010;132(2): 576-9. doi:10.1021/ja906862g.
  96. Zeng C, Xu Y, Xu L, Yu X, Cheng J, Yang L, et al. Inhibition of long non-coding RNA Neat1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer. 2014;14:693. doi: 10.1186/1471-2407-14-693.
  97. Li JH, Zhang SQ, Qiu XG, Zhang SJ, Zheng SH, Zhang DH. Long non-coding RNA Neat1 promotes malignant progression of thyroid carcinoma by regulating miRNA-214. Int J Oncol. 2017;50:708-16. doi: 10.3892/ijo.2016.3803.
  98. Jeong S, Lee J, Kim D, Seol MY, Lee WK, Jeong JJ, et al. Relationship of focally amplified long noncoding on chromosome 1 (Fal1) lncRNA with E2f transcription factors in thyroid cancer. Medicine. 2016;95(4):e2592. doi:10.1097/MD.0000000000002592.
  99. Wang C, Yan G, Zhang Y, Jia X, Bu P. Long noncoding  RNA Meg3 suppresses migration and invasion of thyroid carcinoma by targeting of Rac1. Neoplasma. 2015;62(4):541-9. doi: 10.4149/neo_2015_065.
  100. Jendrzejewski J, Thomas A, Liyanarachchi S, Eiterman A, Tomsic J, He H, et al. Ptcsc3 is involved in papillary thyroid carcinoma development by modulating S100A4 gene expression. J Clin Endocrinol Metab. 2015;100(10):E1370-E1377. doi: 10.1210/jc. 2015-2247.
  101. Barroeta JE, Baloch ZW, Lal P, Pasha TL, Zhang PJ, Livolsi VA. Diagnostic value of differential expression of Ck19, galectin-3, Hbme-1, Erk, Ret, and p16 in benign and malignant follicular-derived lesions of the thyroid: an immunohistochemical tissue microarray analysis. Endocr Pathol. 2006;17(3):225-34. doi:10.1385/ep:17:3:225.
  102. De Matos PS, Ferreira AP, De Oliveira Facuri F, Assumpção LVM, Metze K, Ward LS. Usefulness of Hbme-1, cytokeratin 19 and galectin-3 immunostaining in the diagnosis of thyroid malignancy. Histopathology. 2005;47(4):391-401. doi: 10.1111/j.1365-2559.2005.02221.x.
  103. Beesley MF, Mclaren KM. Cytokeratin 19 and galectin-3 immunohistochemistry in the differential diagnosis of solitary thyroid nodules. Histopathology. 2002;41(3):236-43. doi: 10.1046/j.1365-2559.2002.01442.x.
  104. Liu Z, Li X, Shi L, Maimaiti Y, Chen T, Li Z, et al. Cytokeratin 19, thyroperoxidase, Hbme-1 and galectin-3 in evaluation of aggressive behavior of papillary thyroid carcinoma. Int J Clin Exp Med. 2014;7(8):2304-8.
  105. De Micco C, Savchenko V, Giorgi R, Sebag F, Henry JF. Utility of malignancy markers in fine-needle aspiration cytology of thyroid nodules: comparison of hector battifora mesothelial antigen-1, thyroid peroxidase, and dipeptidyl aminopeptidase IV. Br J Cancer. 2008;98(4):818-23. doi: 10.1038/sj.bjc.6604194.
  106. Weber KB, Shroyer KR, Heinz DE, Nawaz S, Said MS, Haugen BR. The use of a combination of galectin-3 and thyroid peroxidase for the diagnosis and prognosis of thyroid cancer. Am J Clin Pathol. 2004;122(4):524-31. doi: 10.1309/UUQTE505PTN5Q
  107. De Micco C, Vassko V, Henry JF. The value of thyroid peroxidase immunohistochemistry for preoperative fine-needle aspiration diagnosis of the follicular
    variant of papillary thyroid cancer. Surgery. 1999;126(6):1200-4. doi:10.1067/msy.2099.101428.
  108. De Matos LL, Del Giglio AB, Matsubayashi CO, De Lima Farah M, Del Giglio A, Da Silva Pinhal MA. Expression of ck-19, galectin-3 and Hbme-1 in the differentiation of thyroid lesions: systematic review and diagnostic meta-analysis. Diagn Pathol. 2012;7:97. doi: 10.1186/1746-1596-7-97.
  109. Dunderovic D, Lipkovski JM, Boricic I, Soldatovic I, Bozic V, Cvejic D, et al. Defining the value of Cd56, Ck19, galectin 3 and Hbme-1 in diagnosis of follicular cell derived lesions of thyroid with systematic review of literature. Diagn Pathol. 2015;10:196. doi: 10.1186/s13000-015-0428-4.
  110. Arcolia V, Journe F, Renaud F, Leteurtre E, Gabius HJ, Remmelink M, et al. Combination of galectin-3, Ck19, and Hbme-1 immunostaining improves the diagnosis of thyroid cancer. Oncol Lett. 2017;14(4): 4183-9. doi: 10.3892/ol.2017.6719.
  111. Rusinek D, Chmielik E, Krajewska J, Jarzab M, Oczko-Wojciechowska M, Czarniecka A, et al. Current advances in thyroid cancer management. Are we ready for the epidemic rise of diagnoses? Int J Mol Sci. 2017;18(8):1817. doi: 10.3390/ijms18081817.
  112. Zargari N, Mokhtari M. Evaluation of diagnostic utility of immunohistochemistry markers of Trop-2 and Hbme-1 in the diagnosis of thyroid carcinoma. Eur Thyroid J. 2019;8:1-6. doi.org/10.1159/000494430.
  113. Bhatia P, Deniwar A, Friedlander P, Aslam R, Kandil E. Diagnostic potential of ancillary molecular testing in differentiation of benign and malignant thyroid nodules. Anticancer Res. 2015;35(3):1237-41.
  114. Filie AC, Asa SL, Geisinger KR, Logani S, Merino M, Nikiforov YE, et al. Utilization of ancillary studies in thyroid fine needle aspirates: a synopsis of the National Cancer Institute Thyroid Fine Needle Aspiration State of the Science Conference. Diagn Cytopathol. 2008;36(6):438-41. doi: 10.1002/dc.20831.
  115. Lorch JH. ASCO 2019 — what’s new in thyroid oncology? Clin Thyroidol. 2019;31(7):269-71. doi: 10.1089/ct.2019;31.269-271.
  116. Pusztaszeri MP; Sadow PM, Faquin WC. CD117: A novel ancillary marker for papillary thyroid carcinoma in fine-needle aspiration biopsies. Cancer Cytopathol. 2104;122(8). doi: 10.1002/cncy.21437.