Document Type : Review Article(s)

Author

1 Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran

2 Lecturer at Griffith University, Gold Coast, Australia

Abstract

Autophagy means self-eating and is the degradation process of cellular proteins and organelles. In cancers, autophagy has a conflicting function. While it acts as a tumor suppressor by inhibiting the accumulation of damaged organelles and proteins, it functions as an oncogene and accelerates tumor progression.
The related articles in the limited period of time of 2005 to mid-2020 were reviewed through searching PubMed, Google Scholar, and Scopus database. A total of 100 articles met all the selection criteria. The articles published in the last two decades related to the role of miRNAs in regulating autophagy and metastases were selected.
Both miRNAs and autophagy involve in different signaling pathways that are activated in cancers. MicroRNAs and autophagy are critical factors for prediction of prognosis in cancer patients. Significant advancement has been achieved over the last decades. The development in therapeutic strategies has improved the survival rate of cancer patients.
Metastasis is a multistep process; therefore, new detection biomarkers and treatment strategies are needed.

Keywords

How to cite this article:

Irani S. MicroRNAs contribute to metastasis by regulating autophagy: Recent concepts. Middle East J Cancer. 2022;13(1):14-24. doi: 10.30476/mejc.2021.88044.1452.

1.Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Akinyemiju TF, Al Lami FH, Alam T, Alizadeh-Navaei R, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: A systematic analysis for the global burden of disease study. JAMA Oncol. 2018;4(11):1553-1568. doi: 10.1001/ jamaoncol.2018.2706.
2.Irani S. Metastasis to head and neck area: a 16-year retrospective study. Am J Otolaryngol. 2011;32(1):24-7. doi: 10.1016/j.amjoto.2009.09.006.
3.Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7(12):961-7. doi: 10.1038/nrc2254.
4.Arakawa S, Honda S, Yamaguchi H, Shimizu S. Molecular mechanisms and physiological roles of Atg5/Atg7-independent alternative autophagy. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(6):378-85. doi: 10.2183/pjab.93.023.
5.Yun CW, Lee SH. The roles of autophagy in cancer. Int J Mol Sci. 2018;19(11):3466. doi: 10.3390/ijms 19113466.
6.Hua L, Zhu G, Wei J. MicroRNA-1 overexpression increases chemosensitivity of non-small cell lung cancer cells by inhibiting autophagy related 3-mediated autophagy. Cell Biol Int. 2018;42(9):1240-9. doi: 10.1002/cbin.10995.
7.Challapalli A, Carroll L, Aboagye EO. Molecular mechanisms of hypoxia in cancer. Clin Transl Imaging. 2017;5(3):225-53. doi: 10.1007/s40336-017-0231-1.
8.Mowers EE, Sharifi MN, Macleod KF. Autophagy in cancer metastasis. Oncogene. 2017;36(12):1619-30. doi: 10.1038/onc.2016.333.
9.Chen HT, Liu H, Mao MJ, Tan Y, Mo XQ, Meng XJ, et al. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer. 2019;18(1):101. doi: 10.1186/s 12943-019-1030-2.
10.Yang C, Zhang JJ, Peng YP, Zhu Y, Yin LD, Wei JS, et al. A Yin-Yang 1/miR-30a regulatory circuit modulates autophagy in pancreatic cancer cells. J Transl Med. 2017;15(1):211. doi: 10.1186/s12967-017-1308-3.
11.Liu JL, Chen FF, Lung J, Lo CH, Lee FH, Lu YC, et al. Prognostic significance of p62/SQSTM1 subcellular localization and LC3B in oral squamous cell carcinoma. Br J Cancer. 2014;111(5):944-54. doi: 10.1038/bjc. 2014.355.
12.Irani S, Shokri G. The role of miR-143, miR-145, and miR-590 in expression levels of CD44 and vascular endothelial cadherin in oral squamous cell carcinoma. Middle East J Cancer. 2019;10(3):194-204. doi: 10.30476/mejc.2019.78667.
13.Maroof H, Irani S, Ariana A, Vider J, Gopalan V, Lam AK. Interactions of vascular endothelial growth factor and p53 with miR-195 in thyroid carcinoma: possible therapeutic targets in aggressive thyroid cancers. Curr Cancer Drug Targets. 2019;19(7):561-70. doi: 10.2174/1568009618666180628154727.
14.Yang Y, Liang C. MicroRNAs: an emerging player in autophagy. Science Open Res. 2015; 2015:10.14293/ S2199-1006.1.SOR-LIFE.A181CU.v1. doi: 10.14293/ S2199-1006.1.SOR-LIFE.A181CU.v1.
15.Liu L, He J. MicroRNA-20a-mediated loss of autophagy contributes to breast tumorigenesis by promoting genomic damage and instability. Oncogene. 2017;36(42):5874-84. doi: 10.1038/onc.2017.193.
16.Gozuacik D, Akkoc Y, Ozturk DG, Kocak M. Autophagy-regulating microRNAs and cancer. Front Oncol. 2017;7:65. doi: 10.3389/fonc.2017.00065.
17.Jamali Z, Taheri-Anganeh M, Shabaninejad Z, Keshavarzi A, Taghizadeh H, Razavi ZS, et al. Autophagy regulation by microRNAs: Novel insights into osteosarcoma therapy. IUBMB Life. 2020;72(7):1306-21. doi: 10.1002/iub.2277.
18.Aredia F, Scovassi AI. A new function for miRNAs as regulators of autophagy. Future Med Chem. 2017; 9(1):25-36. doi: 10.4155/fmc-2016-0173.
19.Kwon JJ, Willy JA, Quirin KA, Wek RC, Korc M, Yin XM, et al. Novel role of miR-29a in pancreatic cancer autophagy and its therapeutic potential. Oncotarget. 2016;7(44):71635-50. doi: 10.18632/ oncotarget.11928.
20.Hu JL, He GY, Lan XL, Zeng ZC, Guan J, Ding Y, et al. Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis. 2018;7(2):16. doi: 10.1038/s41389-018-0028-8.
21.Mo J, Zhang D, Yang R. MicroRNA-195 regulates proliferation, migration, angiogenesis and autophagy of endothelial progenitor cells by targeting GABARAPL1. Biosci Rep. 2016;36(5). doi: 10.1042/BSR20160139.
22.Wang R, Zhao N, Li S, Fang JH, Chen MX, Yang J, et al. MicroRNA-195 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting the expression of VEGF, VAV2, and CDC42. Hepatology. 2013;58(2):642-53. doi: 10.1002/hep. 26373.
23.Ghosh A, Dasgupta D, Ghosh A, Roychoudhury S, Kumar D, Gorain M, et al. MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2. Cell Death Dis. 2017;8(3):e2706. doi: 10.1038/cddis.2017.123.
24.Jin F, Wang Y, Li M, Zhu Y, Liang H, Wang C, et al. MiR-26 enhances chemosensitivity and promotes apoptosis of hepatocellular carcinoma cells through inhibiting autophagy. Cell Death Dis. 2017;8(1):e2540. doi: 10.1038/cddis.2016.461.
25.Li CJ, Liao WT, Wu MY, Chu PY. New insights into the role of autophagy in tumor immune microenvironment. Int J Mol Sci. 2017;18(7):1566: doi: 10.3390/ ijms18071566.
26.Sung SJ, Kim HK, Hong YK, Joe YA. Autophagy is a potential target for enhancing the anti-angiogenic effect of mebendazole in endothelial cells. Biomol Ther (Seoul). 2019;27(1):117-25. doi: 10.4062/ biomolther.2018.222.
27.Janji B, Berchem G, Chouaib S. Targeting autophagy in the tumor microenvironment: New challenges and opportunities for regulating tumor immunity. Front Immunol. 2018;9:887. doi: 10.3389/fimmu.2018.00887.
28.Pannuru P, Dontula R, Khan AA, Herbert E, Ozer H, Chetty C, et al. miR-let-7f-1 regulates SPARC mediated cisplatin resistance in medulloblastoma cells. Cell Signal. 2014;26(10):2193-201. doi: 10.1016/j.cellsig. 2014.06.014.
29.Tazawa H, Yano S, Yoshida R, Yamasaki Y, Sasaki T, Hashimoto Y, et al. Genetically engineered oncolytic adenovirus induces autophagic cell death through an E2F1-microRNA-7-epidermal growth factor receptor axis. Int J Cancer.2012;131(12):2939-50. doi: 10.1002/ijc.27589.
30.Gundara JS, Zhao J, Gill AJ, Lee JC, Delbridge L, Robinson BG, et al. Noncoding RNA blockade of autophagy is therapeutic in medullary thyroid cancer. Cancer Med. 2015;4(2):174-82. doi: 10.1002/cam4. 355.
31.Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, et al. Human glioma growth is controlled by microRNA-10b. Cancer Res.2011;71(10):3563-72. doi: 10.1158/0008-5472.CAN-10-3568.
32.Huang N, Wu J, Qiu W, Lyu Q, He J, Xie W, et al. MiR-15a and miR-16 induce autophagy and enhance chemosensitivity of Camptothecin. Cancer Biol Ther. 2015;16(6):941-8. doi: 10.1080/15384047.2015. 1040963.
33.Chatterjee A, Chattopadhyay D, Chakrabarti G. MiR-16 targets Bcl-2 in paclitaxel-resistant lung cancer cells and overexpression of miR-16 along with miR-17 causes unprecedented sensitivity by simultaneously modulating autophagy and apoptosis. Cell Signal. 2015;27(2):189-203. doi: 10.1016/j.cellsig.2014. 11.023.
34.He C, Dong X, Zhai B, Jiang X, Dong D, Li B, et al. MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget. 2015;6(30):28867-81. doi: 10.18632/oncotarget.4814.
35.Guo S, Bai R, Liu W, Zhao A, Zhao Z, Wang Y, et al. miR-22 inhibits osteosarcoma cell proliferation and migration by targeting HMGB1 and inhibiting HMGB1-mediated autophagy. Tumour Biol. 2014;35(7):7025-34. doi: 10.1007/s13277-014-1965-2.
36.Wang P, Zhang J, Zhang L, Zhu Z, Fan J, Chen L, et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology. 2013;145(5):1133-43.e12. doi: 10.1053/j.gastro.2013.07.048.
37.Zheng B, Zhu H, Gu D, Pan X, Qian L, Xue B, et al. MiRNA-30a-mediated autophagy inhibition sensitizes renal cell carcinoma cells to sorafenib. Biochem Biophys Res Commun. 2015;459(2):234-9. doi: 10.1016/j.bbrc.2015.02.084.
38.Frankel LB, Wen J, Lees M, Hoyer-Hansen M, Farkas T, Krogh A, et al. microRNA-101 is a potent inhibitor of autophagy. EMBO J. 2011;30(22):4628-41. doi: 10.1038/emboj.2011.331.
39.Sun Q, Liu T, Zhang T, Du S, Xie GX, Lin X, et al. MiR-101 sensitizes human nasopharyngeal carcinoma cells to radiation by targeting stathmin 1. Mol Med Rep. 2015;11(5):3330-6. doi: 10.3892/mmr.2015.3221.
40.Tomasetti M, Monaco F, Manzella N, Rohlena J, Rohlenova K, Staffolani S, et al. MicroRNA-126 induces autophagy by altering cell metabolism in malignant mesothelioma. Oncotarget. 2016;7(24): 36338-52. doi: 10.18632/oncotarget.8916.
41.Zhai H, Fesler A, Ba Y, Wu S, Ju J. Inhibition of colorectal cancer stem cell survival and invasive potential by hsa-miR-140-5p mediated suppression of Smad2 and autophagy. Oncotarget. 2015;6(23): 19735-46. doi: 10.18632/oncotarget.3771.
42.He J, Yu JJ, Xu Q, Wang L, Zheng JZ, Liu LZ, et al. Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy. 2015;11(2):373-84. doi: 10.1080/15548627. 2015.1009781.
43.Zhao J, Nie Y, Wang H, Lin Y. MiR-181a suppresses autophagy and sensitizes gastric cancer cells to cisplatin. Gene. 2016;576(2 Pt 2):828-33. doi: 10.1016/j.gene.2015.11.013.
44.Pennati M, Lopergolo A, Profumo V, De Cesare M, Sbarra S, Valdagni R, et al. miR-205 impairs the autophagic flux and enhances cisplatin cytotoxicity in castration-resistant prostate cancer cells. Biochem Pharmacol. 2014;87(4):579-97. doi: 10.1016/j.bcp. 2013.12.009.
45.Ran X, Yang J, Liu C, Zhou P, Xiao L, Zhang K. MiR-218 inhibits HMGB1-mediated autophagy in endometrial carcinoma cells during chemotherapy. Int J Clin Exp Pathol. 2015;8(6):6617-26.
46.Bhattacharya A, Schmitz U, Raatz Y, Schonherr M, Kottek T, Schauer M, et al. miR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy. Oncotarget. 2015;6(5):2966-80. doi: 10.18632/oncotarget.3070.
47.Zada S, Hwang JS, Ahmed M. Control of the epithelial-to-mesenchymal transition and cancer metastasis by autophagy-dependent SNAI1 degradation. Cells. 2019;8(2). doi: 10.3390/cells8020129.
48.Wang H, Zhang Y, Wu Q, Wang YB, Wang W. miR-16 mimics inhibit TGF-beta1-induced epithelial-to-mesenchymal transition via activation of autophagy in non-small cell lung carcinoma cells. Oncol Rep.2018;39(1):247-54. doi: 10.3892/or. 2017.6088.
49.Irani S, Jafari B. Expression of vimentin and CD44 in mucoepidermoid carcinoma: A role in tumor growth. Indian J Dent Res. 2018;29(3):333-40. doi: 10.4103/ ijdr.IJDR_184_17.
50.Zhang X, Li Z, Xuan Z, Xu P, Wang W, Chen Z, et al. Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis. J Exp Clin Cancer Res. 2018;37(1):320. doi: 10.1186/s13046-018-0993-y.
51.Irani S, Dehghan A. Expression of vascular endothelial-cadherin in mucoepidermoid carcinoma: Role in cancer development. J Exp Clin Cancer Res. 2017;7(6):301-7. doi: 10.1186/s13046-018-0993-y.
52.Sharif T, Martell E, Dai C, Kennedy BE, Murphy P, Clements DR, et al. Autophagic homeostasis is required for the pluripotency of cancer stem cells. Autophagy. 2017;13(2):264-84. doi: 10.1080/15548627.2016. 1260808.
53.Pan H, Cai N, Li M, Liu GH, Izpisua Belmonte JC. Autophagic control of cell 'stemness'. EMBO Mol Med. 2013;5(3):327-31. doi: 10.1002/emmm. 201201999.
54.Zhao Y, Huang Q, Yang J, Lou M, Wang A, Dong J, et al. Autophagy impairment inhibits differentiation of glioma stem/progenitor cells. Brain Res. 2010;1313:250-8. doi: 10.1016/j.brainres.2009.12.004.
55.Asadzadeh Z, Mansoori B. microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. J Cell Physiol. 2019;234(7):10002-17. doi: 10.1002/ jcp.27885.
56.Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211-5. doi: 10.1038/ nm.2284.
57.An F, Liu Y, Hu Y. miR-21 inhibition of LATS1 promotes proliferation and metastasis of renal cancer cells and tumor stem cell phenotype. Oncol Lett. 2017;14(4):4684-8. doi: 10.3892/ol.2017.6746.
58.Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(Pt 23):5591-6. doi: 10.1242/jcs.116392.
59.Ingangi V, Minopoli M, Ragone C, Motti ML, Carriero MV. Role of microenvironment on the fate of disseminating cancer stem cells. Front Oncol. 2019;9:82. doi: 10.3389/fonc.2019.00082.
60.Lv Y, Lei Y, Hu Y, Ding W, Zhang C, Fang C. miR-448 negatively regulates ovarian cancer cell growth and metastasis by targeting CXCL12. Clin Transl Oncol. 2015;17(11):903-9. doi: 10.1007/s12094-015-1325-8.
61.Zhang J, Liu J, Liu Y, Wu W, Li X, Wu Y, et al. miR-101 represses lung cancer by inhibiting interaction of fibroblasts and cancer cells by down-regulating CXCL12. Biomed Pharmacother.2015;74:215-21. doi: 10.1016/j.biopha.2015.08.013.
62.Braga EA, Fridman MV, Kushlinskii NE. Molecular mechanisms of ovarian carcinoma metastasis: Key genes and regulatory microRNAs. Biochemistry (Mosc). 2017;82(5):529-41. doi: 10.1134/S000 6297917050017.
63.Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833(12):3481-98. doi: 10.1016/j.bbamcr.2013.06.026.
64.Mak CS, Yung MM, Hui LM, Leung LL, Liang R, Chen K, et al. MicroRNA-141 enhances anoikis resistance in metastatic progression of ovarian cancer through targeting KLF12/Sp1/survivin axis. Mol Cancer. 2017;16(1):11. doi: 10.1186/s12943-017-0582-2.
65.Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma VR. The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev. 2019;39(2):517-60. doi: 10.1002/med.21531.
66.Satyavarapu EM, Das R, Mandal C, Mukhopadhyay A, Mandal C. Autophagy-independent induction of LC3B through oxidative stress reveals its non-canonical role in anoikis of ovarian cancer cells. Cell Death Dis. 2018;9(10):934. doi: 10.1038/s41419-018-0989-8.
67.Weiswald LB, Richon S, Validire P, Briffod M, Lai-Kuen R, Cordelieres FP, et al. Newly characterised ex vivo colospheres as a three-dimensional colon cancer cell model of tumour aggressiveness. Br J Cancer. 2009;101(3):473-82. doi: 10.1038/sj. bjc.6605173.
68.Zhang X, Cheng SL, Bian K, Wang L, Zhang X, Yan B, et al. MicroRNA-26a promotes anoikis in human hepatocellular carcinoma cells by targeting alpha5 integrin. Oncotarget. 2015;6(4):2277-89. doi: 10.18632/oncotarget.2956.
69.Fu XT, Shi YH, Zhou J, Peng YF, Liu WR, Shi GM, et al. MicroRNA-30a suppresses autophagy-mediated anoikis resistance and metastasis in hepatocellular carcinoma. Cancer Lett. 2018;412:108-17. doi: 10.1016/j.canlet.2017.10.012.
70.Malagobadan S, Nagoor NH. Evaluation of microRNAs regulating anoikis pathways and its therapeutic potential. Biomed Res Int. 2015;2015: 716816. doi: 10.1155/2015/716816.
71.Wang XC, Tian LL, Jiang XY, Wang YY, Li DG, She Y, et al. The expression and function of miRNA-451 in non-small cell lung cancer. Cancer Lett. 2011;311(2):203-9. doi: 10.1016/j.canlet.2011.07.026.
72.Tian Y, Nan Y, Han L, Zhang A, Wang G, Jia Z, et al. MicroRNA miR-451 downregulates the PI3K/AKT pathway through CAB39 in human glioma. Int J Oncol. 2012;40(4):1105-12. doi: 10.3892/ijo.2011.1306.
73.Wu TT, Li WM, Yao YM. Interactions between autophagy and inhibitory cytokines. Int J Biol Sci. 2016;12(7):884-97. doi: 10.7150/ijbs.15194.
74.Ngabire D, Kim GD. Autophagy and inflammatory response in the tumor microenvironment. Int J Mol Sci. 2017;18(9). doi: 10.3390/ijms18092016.
75.Neagu M, Constantin C, Caruntu C, Dumitru C, Surcel M, Zurac S. Inflammation: A key process in skin tumorigenesis. Oncol Lett. 2019;17(5):4068-84. doi: 10.3892/ol.2018.9735.
76.Hirschberger S, Hinske LC, Kreth S. MiRNAs: dynamic regulators of immune cell functions in inflammation and cancer. Cancer Lett. 2018;431:11-21. doi: 10.1016/j.canlet.2018.05.020.
77.Jeffries J, Zhou W, Hsu AY, Deng Q. miRNA-223 at the crossroads of inflammation and cancer. Cancer Lett. 2019;451:136-41. doi: 10.1016/j.canlet. 2019.02.051.
78.Wang Y, Zhang X, Tang W, Lin Z, Xu L, Dong R, et al. miR-130a upregulates mTOR pathway by targeting TSC1 and is transactivated by NF-?B in high-grade serous ovarian carcinoma. Cell Death Differ. 2017;24(12):2089-100. doi: 10.1038/cdd. 2017.129.
79.Fan Q, Yang L, Zhang X, Peng X, Wei S, Su D, et al. The emerging role of exosome-derived non-coding RNAs in cancer biology. Cancer Lett. 2018;414:107-15. doi: 10.1016/j.canlet.2017.10.040.
80.Wang M, Yu F, Ding H, Wang Y, Li P, Wang K. Emerging function and clinical values of exosomal microRNAs in cancer. Mol Ther Nucleic Acids. 2019;16:791-804. doi: 10.1016/j.omtn.2019.04.027.
81.Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 2016;76(7):1770-80. doi: 10.1158/0008-5472.CAN-15-1625.
82.Hsu Y, Hung J, Chang W, Lin Y, Pan Y, Tsai P, et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 2017;36(34):4929-42. doi: 10.1038/onc.2017.105.
83.Wei Y, Lai X, Yu S, Chen S, Ma Y, Zhang Y, et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat. 2014;147(2):423-31. doi: 10.1007/s10549-014-3037-0.
84.Yuwen D, Ma Y, Wang D, Gao J, Li X, Xue W, et al. Prognostic role of circulating exosomal miR-425-3p for the response of NSCLC to platinum-based chemotherapy. Cancer Epidemiol Biomarkers Prev. 2019;28(1):163-73. doi: 10.1158/1055-9965.EPI-18-0569.
85.YiRen H, YingCong Y, Sunwu Y, Keqin L, Xiaochun T, Senrui C, et al. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol Cancer. 2017;16(1):174. doi: 10.1186/s12943-017-0743-3.
86.Luo M, Ding L, Li Q, Yao H. miR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα. Breast Cancer. 2017;24(5):673-82. doi: 10.1007/s12282-017-0756-1.
87.Huangfu L, Liang H, Wang G, Su X, Li L, Du Z, et al. miR-183 regulates autophagy and apoptosis in colorectal cancer through targeting of UVRAG. Oncotarget. 2016;7(4):4735-45. doi: 10.18632/ oncotarget.6732.
88.Xie T, Huang M, Wang Y, Wang L, Chen C, Chu X. MicroRNAs as regulators, biomarkers and therapeutic targets in the drug resistance of colorectal cancer. Cell Physiol Biochem. 2016;40(1-2):62-76. doi: 10.1159/000452525.
89.Czaja MJ, Ding WX, Donohue TM Jr, Friedman SL, Kim JS, Komatsu M, et al. Functions of autophagy in normal and diseased liver. Autophagy. 2013;9(8):1131-58. doi: 10.4161/auto.25063.
90.Jing Z, Han W, Sui X, Xie J, Pan H. Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers. Cancer Lett. 2015;356(2 Pt B):332-8. doi: 10.1016/j.canlet. 2014.09.039.
91.Yin Q, Feng W, Shen X, Ju S. Regulatory effects of lncRNAs and miRNAs on autophagy in malignant tumorigenesis. Biosci Rep. 2018;38(5):BSR 20180516. doi: 10.1042/ BSR20180516.
92.Chen L, Zhou Y, Sun Q, Zhou J, Pan H, Sui X. Regulation of autophagy by miRNAs and their emerging roles in tumorigenesis and cancer treatment. Int Rev Cell Mol Biol. 2017;334:1-26. doi: 10.1016/bs. ircmb.2017.03.003.
93.Wang Y, Yin W, Lin Y, Yin K, Zhou L, Du Y, et al. Downregulated circulating microRNAs after surgery: potential noninvasive biomarkers for diagnosis and prognosis of early breast cancer. Cell Death Discov. 2018;4:21. doi: 10.1038/s41420-018-0089-7.
94.Salehi M, Sharifi M. Exosomal miRNAs as novel cancer biomarkers: Challenges and opportunities. J Cell Physiol.2018;233(9):6370-80. doi: 10.1002/ jcp.26481.
95.McGuire A, Brown JA, Kerin MJ. Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev. 2015;34(1):145-55. doi: 10.1007/s10555-015-9551-7.
96.Liu H, He Z, Bode P, Moch H, Simon HU. Downregulation of autophagy-related proteins 1, 5, and 16 in testicular germ cell tumors parallels lowered LC3B and elevated p62 levels, suggesting reduced basal autophagy. Front Oncol. 2018;8:366. doi: 10.3389/fonc.2018.00366.
97.Eissa S, Matboli M, Awad N, Kotb Y. Identification and validation of a novel autophagy gene expression signature for human bladder cancer patients. Tumour Biol. 2017;39(4):1010428317698360. doi: 10.1177/1010428317698360.