Document Type : Original Article(s)

Authors

1 Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, India

2 Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bangalore, India

3 Department of Head and Neck Oncology, Kidwai Memorial Institute of Oncology, Bangalore, India

4 Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore, India

Abstract

Background: Long-term outcomes of intensity modulated radiotherapy with reduced high-risk clinical target volume (HRCTV) margin for radical chemoradiation of locally advanced head and neck cancers (LAHNSCC).
Method: The present retrospective study involved 83 LAHNSCC patients treated with chemoradiation. HRCTV was created with uniform margins of 5 mm around the primary tumor- gross tumor volume (GTV), and the nodal tumor GTV, edited at bone and air interface. The first echelon nodal station in N0 neck and that harboring disease in N+ neck was taken as intermediate-risk clinical target volume (IR-CTV). The remaining nodal stations were taken as low-risk CTV. High-, intermediate-, and low-risk regions were prescribed 70, 63, and 56 Gy, respectively, in 35 fractions, five to six fractions per week over six to seven weeks. 63 patients received five fractions and 20 patients received six fractions per week. Acute toxicities were assessed using CTCAE version 4.0 and the survival analysis was performed via Kaplan Meier method.
Results: Acute toxicities were grade 1 dermatitis in 77%, grade 3 mucositis in 35%, and xerostomia was predominantly grade 1 in 68.6%. Moreover, 10% required the placement of nasogastric tube during radiation therapy due to grade 3 dysphagia. Complete clinical and radiological response (CR) of respectively 89.1% and 85.5% was observed in primary and nodal disease at the end of the treatment and 100% and 94% at three months, respectively, after chemo radiation therapy. At a median follow-up of 48.1 months, the five-year overall survival was 63.2%.
Conclusion: Reduced HRCTV margin of 5 mm was found to be efficient and had good compliance with tolerable acute toxicities, reduced overall treatment time, and reas onable long-term outcomes.

Keywords

How to cite this article:

Pasha T, Krishna U, Loni R, Kumar A, Chandraraj V, Chavan P, et al. Long-term outcomes of reduced high-risk clinical target volume margin for intensity-modulated radiotherapy in locally advanced head and neck cancers. Middle East J Cancer. 2022;13(4):665-73. doi: 10.30476/mejc.2020. 86958.1378.

1. Shlomo A Koyfman, MD, General principles of radiation therapy for head and neck cancer [Internet] Up-to-date 2020 June [cited 2020 July 21] Available from: https://www.uptodate.com/contents/general-principles-of-radiation-therapy-for-head-and-neck-cancer
2. Mell LK, Mehrotra AK, Mundt AJ. Intensity-modulated radiation therapy use in the U.S., 2004. Cancer. 2005;104(6):1296-303. doi:10.1002/cncr.21284.
3. Grégoire V, Levendag P, Ang KK, Bernier J, Braaksma M, Budach V, et al. CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC,RTOG consensus guidelines. Radiother Oncol. 2003;69(3): 227-36. doi:10.1016/j.radonc.2003.09.011.
4. Levendag P, Braaksma M, Coche E, van Der Est H, Hamoir M, Muller K, et al. Rotterdam and Brussels CT-based neck nodal delineation compared with the surgical levels as defined by the American Academy of Otolaryngology-Head and Neck Surgery. Int J Radiat Oncol Biol Phys. 2004;58(1):113-23. doi: 10.1016/s0360-3016(03)01453-6.
5. Nowak PJ, Wijers OB, Lagerwaard FJ, Levendag PC. A three-dimensional CT-based target definition for elective irradiation of the neck. Int J Radiat Oncol Biol Phys. 1999;45(1):33-9. doi: 10.1016/s0360-3016(99)00049-8.
6. Lapeyre M, Henrot P, Alfonsi M, Bardet E, Bensadoun RJ, Dolivet G, et al. Propositions for the selection and the delineation of peritumoral microscopic disease volumes in oral cavity and oropharyngeal cancers (lymph nodes excluded). [Article in French] Cancer Radiother. 2005;9(4):261-70. doi:10.1016/j.canrad. 2005.03.005.
7. Grégoire V, Evans M, Le QT, Bourhis J, Budach V, Chen A, et al. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines. Radiother Oncol. 2018;126(1):3-24. doi: 10.1016/j.radonc.2017.10.016.
8. Eisbruch A, Foote RL, O'Sullivan B, Beitler JJ, Vikram B. Intensity-modulated radiation therapy for head and neck cancer: emphasis on the selection and delineation of the targets. Semin Radiat Oncol. 2002;12(3):238-49. doi: 10.1053/srao.2002.32435.
9. Eisbruch A, Harris J, Garden AS, Chao CK, Straube W, Harari PM, et al. Multi-institutional trial of accelerated hypofractionated intensity-modulated radiation therapy for early-stage oropharyngeal cancer (RTOG 00-22). Int J Radiat Oncol Biol Phys. 2010;76(5):1333-8. doi: 10.1016/j.ijrobp.2009.04.011.
10. Lee NY, Zhang Q, Pfister DG, Kim J, Garden AS, Mechalakos J, et al. Addition of bevacizumab to standard chemoradiation for locoregionally advanced nasopharyngeal carcinoma (RTOG 0615): a phase 2 multi-institutional trial. Lancet Oncol. 2012;13(2):172-80. doi: 10.1016/S1470-2045(11)70303-5.
11. Palazzi M, Tomatis S, Orlandi E, Guzzo M, Sangalli C, Potepan P, et al. Effects of treatment intensification on acute local toxicity during radiotherapy for head and neck cancer: prospective observational study validating CTCAE, version 3.0, scoring system. Int J Radiat Oncol Biol Phys. 2008;70(2):330-7. doi: 10.1016/j.ijrobp.2007.06.022.
12. Van Gestel D, Van Den Weyngaert D, Schrijvers D, Weyler J, Vermorken JB. Intensity-modulated radiotherapy in patients with head and neck cancer: a European single-centre experience. Br J Radiol. 2011;84(1000):367-74. doi: 10.1259/bjr/67058055.
13. Lauve A, Morris M, Schmidt-Ullrich R, Wu Q, Mohan R, Abayomi O, et al. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas: II--clinical results. Int J Radiat Oncol Biol Phys. 2004;60(2):374-87. doi: 10.1016/j.ijrobp.2004.03.010.
14. Tao Y, Auperin A, Blanchard P, Alfonsi M, Sun XS, Rives M, et al. Concurrent cisplatin and dose escalation with intensity-modulated radiotherapy (IMRT) versus conventional radiotherapy for locally advanced head and neck squamous cell carcinomas (HNSCC): GORTEC 2004-01 randomized phase III trial. Radiother Oncol. 2020;150:18-25. doi: 10.1016/j. radonc.2020.05.021.
15. Chakraborty S, Ghoshal S, Patil VM, Oinam AS, Sharma SC. Preliminary results of SIB-IMRT in head and neck cancers: report from a regional cancer center in northern India. J Cancer Res Ther. 2009;5(3):165-72. doi: 10.4103/0973-1482.57121.
16. Chao KS, Ozyigit G, Tran BN, Cengiz M, Dempsey JF, Low DA. Patterns of failure in patients receiving definitive and postoperative IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2003;55(2):312-21. doi: 10.1016/s0360-3016(02)03940-8.
17. Lee N, Xia P, Fischbein NJ, Akazawa P, Akazawa C, Quivey JM. Intensity-modulated radiation therapy for head-and-neck cancer: the UCSF experience focusing on target volume delineation. Int J Radiat Oncol Biol Phys. 2003;57(1):49-60. doi: 10.1016/s0360-3016(03)00405-x.
18. Eisbruch A, Marsh LH, Dawson LA, Bradford CR, Teknos TN, Chepeha DB, et al. Recurrences near base of skull after IMRT for head-and-neck cancer: implications for target delineation in high neck and for parotid gland sparing. Int J Radiat Oncol Biol Phys. 2004;59(1):28-42. doi: 10.1016/j.ijrobp. 2003.10.032.
19. Yao M, Dornfeld KJ, Buatti JM, Skwarchuk M, Tan H, Nguyen T, et al. Intensity-modulated radiation treatment for head-and-neck squamous cell carcinoma--the University of Iowa experience. Int J Radiat Oncol Biol Phys. 2005;63(2):410-21. doi: 10.1016/j.ijrobp. 2005.02.025.
20. Studer G, Luetolf UM, Glanzmann C. Locoregional failure analysis in head-and-neck cancer patients treated with IMRT. Strahlenther Onkol. 2007;183(8):417-23; discussion 424-5. doi: 10.1007/s00066-007-1663-8.
21. Bussels B, Maes A, Hermans R, Nuyts S, Weltens C, Van den Bogaert W. Recurrences after conformal parotid-sparing radiotherapy for head and neck cancer. Radiother Oncol. 2004;72(2):119-27. doi: 10.1016/j. radonc.2004.03.014.
22. Caudell JJ, Meredith RF, Spencer SA, Keene KS, Dobelbower MC, Bonner JA. Margin on gross tumor volume and risk of local recurrence in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2010;76(1):164-8. doi: 10.1016/j.ijrobp.2009.01.037.
23. Grégoire V, Ang K, Budach W, Grau C, Hamoir M, Langendijk JA, et al. Delineation of the neck node levels for head and neck tumors: a 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother Oncol. 2014;110(1):172-81. doi: 10.1016/j.radonc. 2013.10.010.
24. Brouwer CL, Steenbakkers RJ, Bourhis J, Budach W, Grau C, Grégoire V, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines. Radiother Oncol. 2015;117(1):83-90. doi: 10.1016/j. radonc.2015.07.041.
25. Hong TS, Tomé WA, Harari PM. Heterogeneity in head and neck IMRT target design and clinical practice. Radiother Oncol. 2012;103(1):92-8. doi: 10.1016/j. radonc.2012.02.010.
26. Ho KF, Fowler JF, Sykes AJ, Yap BK, Lee LW, Slevin NJ. IMRT dose fractionation for head and neck cancer: variation in current approaches will make standardisation difficult. Acta Oncol. 2009;48(3):431-9. doi: 10.1080/02841860802372272.
27. Campbell S, Poon I, Markel D, Vena D, Higgins K, Enepekides D, et al. Evaluation of microscopic disease in oral tongue cancer using whole-mount histopathologic techniques: implications for the management of head-and-neck cancers. Int J Radiat Oncol Biol Phys. 2012;82(2):574-81. doi: 10.1016/j.ijrobp.2010.09.038.
28. Apisarnthanarax S, Elliott DD, El-Naggar AK, Asper JA, Blanco A, Ang KK, et al. Determining optimal clinical target volume margins in head-and-neck cancer based on microscopic extracapsular extension of metastatic neck nodes. Int J Radiat Oncol Biol Phys. 2006;64(3):678-83. doi: 10.1016/j.ijrobp.2005.08.020.
29. Ghadjar P, Schreiber-Facklam H, Gräter R, Evers C, Simcock M, et al. Quantitative analysis of extracapsular extension of metastatic lymph nodes and its significance in radiotherapy planning in head and neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2010;76(4):1127-32. doi: 10.1016/j.ijrobp. 2009.03.065.