Document Type : Original Article(s)

Authors

1 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2 Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey

3 Rahat Breathe and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

Background: MicroRNAs (miRNAs) regulate gene expression and various cellular activities. They also hold significant importance in the progression and development of human malignancies. Among these, miRNA-484 and the Fis-1 gene have been identified as having substantial roles in lung cancer. This study aims to ascertain miRNA-484 and Fis-1 gene expression levels in non-small cell lung cancer (NSCLC) patients.
Method: In this case-control study, 45 pairs of tumor tissues and their corresponding healthy margin tissues were surgically obtained from NSCLC patients and promptly preserved in liquid nitrogen after excision. Total RNA extraction was performed using TRIzol, followed by cDNA synthesis using a designated kit. Afterward, we used quantitative reverse transcription polymerase chain reaction (qRT-PCR) to measure the expression levels of miRNA-484 and the Fis-1 gene. Furthermore, the clinicopathological characteristics of the NSCLC patients were assessed.
Results: Our findings revealed an upregulation of miRNA-484 expression and downregulation of Fis-1 gene expression in NSCLC tissues compared with non-tumor tissues. Additionally, significant correlations were observed between miRNA-484 and Fis-1 gene expression levels and clinicopathological features of the patients, including factors such as lymph node involvement and distant metastasis.
Conclusion: These findings suggest the potential utility of Fis-1 and miR-484 as prognostic and diagnostic markers in NSCLC.

Highlights

Leila Namvar (Google Scholar)

Habib Zarredar (Google Scholar)

Keywords

Main Subjects

How to cite this article:

Namvar L, Nadiri M, Mohebbi Z, Asadi M, Seyyedi M, Amiri-Sadeghan A, et al. Evaluation of Fis-1 and miR-484 expression levels in tumor tissue samples and healthy tumor margins in lung cancer. Middle East J Cancer. 2024;15(1):1-7. doi: 10.30476/mejc.2023. 96826.1839.

  1. Zarredar H, Ansarin K, Baradaran B, Ahdi Khosroshahi S, Farajnia S. Potential molecular targets in the treatment of lung cancer using siRNA technology. Cancer Invest. 2018;36(1):37-58. doi: 10.1080/07357907.2017.1416393.
  2. Yuan M, Huang LL, Chen JH, Wu J, Xu Q. The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduct Target Ther. 2019;4:61. doi: 10.1038/s41392-019-0099-9.
  3. Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell. 2006;126(1):163-75. doi: 10.1016/j.cell.2006.06.021.
  4. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell. 2001;1(4):515-25. doi: 10.1016/s1534-5807(01)00055-7.
  5. Ihenacho UK, Meacham KA, Harwig MC, Widlansky ME, Hill RB. Mitochondrial fission protein 1: emerging roles in organellar form and function in health and disease. Front Endocrinol (Lausanne). 2021;12:660095. doi: 10.3389/fendo.2021.660095.
  6. Serasinghe MN, Wieder SY, Renault TT, Elkholi R, Asciolla JJ, Yao JL, et al. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol Cell. 2015;57(3):521-36. doi: 10.1016/j.molcel.2015.01.003.
  7. Lee S, Park YY, Kim SH, Nguyen OTK, Yoo YS, Chan GK, et al. Human mitochondrial Fis1 links to cell cycle regulators at G2/M transition. Cell Mol Life Sci. 2014;71(4):711-25. doi: 10.1007/s00018-013-1428-8.
  8. Zarredar H, Ansarin K, Baradaran B, Shekari N, Eyvazi S, Safari F, et al. Critical microRNAs in lung cancer: recent advances and potential applications. Anticancer Agents Med Chem. 2018;18(14):1991-2005. doi: 10.2174/1871520618666180808125459.
  9. Zarredar H, Farajnia S, Ansarin K, Baradaran B, Aria M, Asadi M. Synergistic effect of novel EGFR inhibitor AZD8931 and p38α siRNA in lung adenocarcinoma cancer cells. Anticancer Agents Med Chem. 2019;19(5):638-44. doi: 10.2174/1871520619666190301125203.
  10. Ye FG, Song CG, Cao ZG, Xia C, Chen DN, Chen L, et al. Cytidine deaminase axis modulated by miR-484 differentially regulates cell proliferation and chemoresistance in breast cancer. Cancer Res. 2015;75(7): 1504-15. doi: 10.1158/0008-5472.CAN-14-2341.
  11. Guo X, Han T, Hu P, Guo X, Zhu C, Wang Y, et al. Five microRNAs in serum as potential biomarkers for prostate cancer risk assessment and therapeutic intervention. Int Urol Nephrol. 2018;50(12):2193-200. doi: 10.1007/s11255-018-2009-4.
  12. Daryabari SS, Safaralizadeh R, Hosseinpourfeizi M, Moaddab Y, Shokouhi B. Overexpression of SSH1 in gastric adenocarcinoma and its correlation with clinicopathological features. J Gastrointest Oncol. 2018;9(4):728-33. doi: 10.21037/jgo.2018.03.09.
  13. Zarredar H, Pashapour S, Farajnia S, Ansarin K, Baradaran B, Ahmadzadeh V, et al. Targeting the KRAS, p38α, and NF-κB in lung adenocarcinoma cancer cells: The effect of combining RNA interferences with a chemical inhibitor. J Cell Biochem. 2019;120(6):10670-7. doi: 10.1002/jcb.28357.
  14. Wang Z, Liu Z, Fang X, Yang H. MiR-142-5p suppresses tumorigenesis by targeting PIK3CA in non-small cell lung cancer. Cell Physiol Biochem. 2017;43(6):2505-15. doi: 10.1159/000484459.
  15. Zhuang Z, Sun C, Gong H. High serum miR-484 expression is associated with the diagnosis and prognosis of patients with non-small cell lung cancer. Exp Ther Med. 2019;18(5):4095-102. doi: 10.3892/etm.2019.8010.
  16. Yang Y, Lin X, Lu X, Luo G, Zeng T, Tang J, et al. Interferon–microRNA signalling drives liver precancerous lesion formation and hepatocarcinogenesis. Gut. 2016;65(7):1186-201. doi: 10.1136/gutjnl-2015-310318.
  17. Mei Q, Xue G, Li X, Wu Z, Li X, Yan H, et al. Methylation-induced loss of miR-484 in microsatellite-unstable colorectal cancer promotes both viability and IL-8 production via CD137L. J Pathol. 2015;236(2):165-74. doi: 10.1002/path.4525.
  18. Pashaei E, Pashaei E, Ahmady M, Ozen M, Aydin N. Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy. PLoS One. 2017;12(6):e0179543. doi: 10.1371/journal.pone.0179543.
  19. Lee D, Tang W, Dorsey TH, Ambs S. miR-484 is associated with disease recurrence and promotes migration in prostate cancer. Biosci Rep. 2020;40(5):BSR20191028. doi: 10.1042/BSR20191028.
  20. Li T, Ding ZL, Zheng YL, Wang W. MiR-484 promotes non-small-cell lung cancer (NSCLC) progression through inhibiting Apaf-1 associated with the suppression of apoptosis. Biomed Pharmacother. 2017;96:153-64. doi: 10.1016/j.biopha.2017.09.102.
  21. Li Y, Liu Y, Yao J, Li R, Fan X. Downregulation of miR-484 is associated with poor prognosis and tumor progression of gastric cancer. Diagn Pathol. 2020;15(1):25. doi: 10.1186/s13000-020-00946-8.
  22. Lin X, Li J, Yin G, Zhao Q, Elias D, Lykkesfeldt AE, et al. Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties. Breast Cancer Res. 2013;15(6):R119. doi: 10.1186/bcr3588.
  23. Yamamori T, Ike S, Bo T, Sasagawa T, Sakai Y, Suzuki M, et al. Inhibition of the mitochondrial fission protein dynamin-related protein 1 (Drp1) impairs mitochondrial fission and mitotic catastrophe after x-irradiation. Mol Biol Cell. 2015;26(25):4607-17. doi: 10.1091/mbc.E15-03-0181.
  24. Jin X, Zheng X, Li F, Liu B, Li H, Hirayama R, et al. Fragmentation level determines mitochondrial damage response and subsequently the fate of cancer cells exposed to carbon ions. Radiother Oncol. 2018;129(1):75-83. doi: 10.1016/j.radonc.2017.11.019.
  25. Hsiao CP, Wang D, Kaushal A, Chen MK, Saligan L. Differential expression of genes related to mitochondrial biogenesis and bioenergetics in fatigued prostate cancer men receiving external beam radiation therapy. J Pain Symptom Manage. 2014;48(6):1080-90. doi: 10.1016/j.jpainsymman.2014.03.010.
  26. Wang K, Long B, Jiao JQ, Wang JX, Liu JP, Li Q, et al. miR-484 regulates mitochondrial network through targeting Fis1. Nat Commun. 2012;3:781. doi: 10.1038/ncomms1770.
  27. Karimi D, Pedram N, Kakaei F, Asadi M, Poursaei E, Kermani TA. FIS1 overexpression is correlated with tumor metastasis in gastric adenocarcinoma. J Gastrointest Cancer. 2022;53(2):466-71. doi: 10.1007/s12029-021-00639-5.