Document Type : Original Article(s)

Authors

1 Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Background: Breast cancer is known to be one of the most prevalent malignancies in women worldwide. Umbelliprenin (UMB) is a naturally-occurring component derived from plant species, which has shown anticancer properties. The present study aimed to evaluate the effect of UMB on the PI3K / Akt / ERK signaling pathway and their products HIF-1α / VEGF in the MDA-MB-231 cell line.
Method: In this experimental study, the cytotoxic effect of UMB on MDA-MB- 231 cells was evaluated using the MTT assay and the UMB concentrations of IC5 and IC10 were selected for the signaling pathway study. MDA-MB-231 cells were stimulated with EGF and CoCl2 and UMB IC5 and IC10 effects on gene expression and translation was studied. PI3K / Akt / mTOR / S6K / Erk1 and 2 / 4E-BP1 / HIF-1α / HIF-1α/ EGFR / VEGFR and VEGF mRNA expression, and VEGF / HIF-1α proteins were evaluated employing real time polymerase chain reaction and western blot analysis, respectively.
Results: The concentrations of UMB in IC10 and IC5 were 20 and 10 μM, respectively. UMB, specifically IC10, significantly inhibited PI3K, ERK1, ERK2, Akt, mTOR, HIF1-α, HIF1-β mRNA, as well as HIF-1α and VEGF protein expression.
Conclusion: Our results suggested that UMB, a cytotoxic agent, inhibits PI3K / Akt / ERK signal pathway in the CoCl2 or EGF-stimulated MDA-MB-231 cells.

Keywords

How to cite this article:

Mahmoodi Khatonabadi S, Salami S, Mirfakhraie R, Atabakhshian R, Sirati-Sabet M, Gholamali Yaghmaei B, et al. Umbelliprenin inhibited angiogenesis and metastasis of MDA-MB-231 cell line through downregulation of CoCl2 / EGF-mediated PI3K / AKT / ERK signaling. Middle East J Cancer. 2022;13(2):226-36-p. doi: 10.30476/mejc.2021. 86492.1347.

  1. Najminejad H, Kalantar SM, Abdollahpour-Alitappeh M, Karimi MH, Seifalian AM, Gholipourmalekabadi M, et al. Emerging roles of exosomal miRNAs in breast cancer drug resistance. IUBMB Life. 2019;71(11):1672-84. doi:10.1002/iub.2116.
  2. Toss A, Cristofanilli M. Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res. 2015;17(1):60. doi:10.1186/s13058-015-0560-9.
  3. Waks AG, Winer EP. Breast cancer treatment: A review. JAMA. 2019;321(3):288-300. doi:10.1001/jama.2018.19323.
  4. Abdollahpour-Alitappeh M, Lotfinia M, Bagheri N, Sineh Sepehr K, Habibi-Anbouhi M, Kobarfard F, et al. Trastuzumab-monomethyl auristatin E conjugate exhibits potent cytotoxic activity in vitro against HER2-positive human breast cancer. J Cell Physiol.
    2019;234(3):2693-704. doi:10.1002/jcp.27085.
  5. Zhong M, Li N, Qiu X, Ye Y, Chen H, Hua J, et al. TIPE regulates VEGFR2 expression and promotes angiogenesis in colorectal cancer. Int J Biol Sci. 2020;16(2):272. doi: 10.7150/ijbs.37906.
  6. Farhdihosseinabadi B, Salimi M, Kazemi B, Ghanbarian H, Mozafari M, Niknejad H. Inducing type 2 immune response, induction of angiogenesis, and anti-bacterial and anti-inflammatory properties make Lacto-n-Neotetraose (LNnT) a therapeutic choice to accelerate the wound healing process. Med Hypotheses. 2020;134:109389. doi: 10.1016/j.mehy.2019.109389.
  7. Chen YJ, Wu SC, Wang HC, Wu TH, Yuan SSF, Lu TT, et al. AActivation of angiogenesis and wound healing in diabetic mice using no-delivery dinitrosyl iron complexes. Mol Pharm. 2019;16(10):4241-51. doi:10.1021/acs.molpharmaceut.9b00586.
  8. Javadian M, Gharibi T, Shekari N, Abdollahpour-Alitappeh M, Mohammadi A, Hossieni A, et al. The role of microRNAs regulating the expression of matrix metalloproteinases (MMPs) in breast cancer development, progression, and metastasis. J Cell Physiol. 2019;234(5):5399-412. doi: 10.1002/jcp.27445.
  9. Qin S, Li A, Yi M, Yu S, Zhang M, Wu K. Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J Hematol Oncol. 2019;12(1):27. doi: 10.1186/s13045-019-0718-5.
  10. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457-74. doi: 10.1038/nrc.2017.51.
  11. Larsen AK, Ouaret D, El Ouadrani K, Petitprez A. Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Ther. 2011;131(1):80-90. doi: 10.1016/j.pharmthera.2011.03.012.
  12. Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2011;2(12):1117-33. doi: 10.1177/1947601911423654.
  13. Koyasu S, Kobayashi M, Goto Y, Hiraoka M, Harada H. Regulatory mechanisms of hypoxia-inducible factor 1 activity: Two decades of knowledge. Cancer Sci. 2018;109(3):560-71. doi: 10.1111/cas.13483.
  14. van Cruijsen H, Giaccone G, Hoekman K. Epidermal growth factor receptor and angiogenesis: Opportunities for combined anticancer strategies. Int J Cancer. 2005;117(6):883-8. doi: 10.1002/ijc.21479.
  15. Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. 2011;4:51. doi: 10.3389/fnmol.2011.00051.
  16. Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res. 2001;49(3):507-21. doi: 10.1016/s0008-6363(00)00281-9.
  17. Laderoute KR, Calaoagan JM, Gustafson-Brown C, Knapp AM, Li GC, Mendonca HL, et al. The response of c-Jun/AP-1 to chronic hypoxia is hypoxia-inducible factor 1α dependent. Mol Cell Biol. 2002;22(8):2515-23. doi: 10.1128/MCB.22.8.2515-2523.2002.
  18. Liu ZJ, Semenza GL, Zhang HF. Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci B. 2015;16(1):32-43. doi: 10.1631/jzus.B1400221.
  19. Zhang J, Lu A, Beech D, Jiang B, Lu Y. Suppression of breast cancer metastasis through the inhibition of VEGF-mediated tumor angiogenesis. Cancer Ther. 2007;5:273-86.
  20. Hamidinia M, Ramezani M, Mojtahedi Z. Cytotoxic/proliferative effects of umbelliprenin on colon cancer cell lines. Ann Colorectal Res. 2013;1(3):101-5. doi:10.5812/acr.12476.
  21. Shakeri A, Iranshahy M, Iranshahi M. Biological properties and molecular targets of umbelliprenin–a mini-review. J Asian Nat Prod Res. 2014;16(8):884-9. doi: 10.1080/10286020.2014.917630.
  22. Zhang L, Sun X, Si J, Li G, Cao L. Umbelliprenin isolated from Ferula sinkiangensis inhibits tumor growth and migration through the disturbance of Wnt signaling pathway in gastric cancer. PLoS One. 2019;14(7):e0207169. doi:10.1371/journal.pone.0207169.
  23. Khaghanzadeh N, Nakamura K, Kuramitsu Y, Ghaderi A, Mojtahedi Z. Immune-associated proteins with potential in vivo anti-tumor activities are upregulated in lung cancer cells treated with umbelliprenin: A proteomic approach. Oncol Lett. 2016;12(6):5295-302. doi: 10.3892/ol.2016.5352.
  24. Naderi Alizadeh M, Rashidi M, Muhammadnejad A, Moeini Zanjani T, Ziai SA. Antitumor effects of umbelliprenin in a mouse model of colorectal cancer. Iran J Pharm Res. 2018;17(3):976-85.
  25. Rashidi M, Khalilnezhad A, Amani D, Jamshidi H, Muhammadnejad A, Bazi A, et al. Umbelliprenin shows antitumor, antiangiogenesis, antimetastatic, anti-inflammatory, and immunostimulatory activities in 4T1 tumor-bearing Balb/c mice. J Cell Physiol. 2018;233(11):8908-18. doi: 10.1002/jcp.26814.
  26. Madmoli M. Evaluation of chemotherapy complications in patients with cancer: A systematic review. International Journal of Research Studies in Science, Engineering and Technology. 2018;5(12):59-64.
  27. Rajabi M, Mousa SA. The role of angiogenesis in cancer treatment. Biomedicines. 2017;5(2):34. doi: 10.3390/biomedicines5020034.
  28. Frandsen S, Kopp S, Wehland M, Pietsch J, Infanger M, Grimm D. Latest results for anti-angiogenic drugs in cancer treatment. Curr Pharm Des. 2016;22(39):5927-42. doi: 10.2174/1381612822666160715130419.
  29. Khaghanzadeh N, Mojtahedi Z, Ramezani M, Erfani N, Ghaderi A. Umbelliprenin is cytotoxic against QUDB large cell lung cancer cell line but anti-proliferative against A549 adenocarcinoma cells. Daru. 2012;20(1):69. doi: 10.1186/2008-2231-20-69.
  30. Taddeo VA, Epifano F, Preziuso F, Fiorito S, Caron N, Rives A, et al. HPLC analysis and skin whitening effects of umbelliprenin-containing extracts of anethum graveolens, pimpinella anisum, and ferulago campestris. Molecules. 2019;24(3):501. doi: 10.3390/
  31. Rashidi M, Ziai SA, Zanjani TM, Khalilnezhad A, Jamshidi H, Amani D. Umbelliprenin is potentially toxic against the HT29, CT26, MCF-7, 4T1, A172, and GL26 cell lines, potentially harmful against bone marrow-derived stem cells, and non-toxic against peripheral blood mononuclear cells. Iran Red Crescent Med J. 2016;18(7)doi: 10.5812/ircmj.35167.
  32. Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12(1):3-20. doi: 10.1002/1878-0261.12155.
  33. Goldman CK, Kim J, Wong WL, King V, Brock T, Gillespie GY. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol Biol Cell. 1993;4(1): 121-33. doi: 10.1091/mbc.4.1.121.
  34. Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015;3:83-92. doi: 10.2147/HP.S93413.
  35. Chen R, Xu J, She Y, Jiang T, Zhou S, Shi H, et al. Necrostatin-1 protects C2C12 myotubes from CoCl2-induced hypoxia. Int J Mol Med. 2018;41(5):2565-72. doi: 10.3892/ijmm.2018.3466.
  36. Rana NK, Singh P, Koch B. CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biol Res. 2019;52(1):12. doi: 10.1186/s40659-019-0221-z.
  37. Li Q, Ma R, Zhang M. CoCl2 increases the expression of hypoxic markers HIF-1α, VEGF and CXCR4 in breast cancer MCF-7 cells. Oncol Lett. 2018;15(1):1119-24. doi: 10.3892/ol.2017.7369.
  38. Jang Y, Han J, Kim SJ, Kim J, Lee MJ, Jeong S, et al. Suppression of mitochondrial respiration with auraptene inhibits the progression of renal cell carcinoma: involvement of HIF-1α degradation. Oncotarget. 2015;6(35):38127. doi: 10.18632/oncotarget.5511.
  39. Motlagh FM, Gholami O. Comparison of Umbelliprenin and Auraptene in cytotoxic effects and myeloid cell leukemia type-1 (Mcl-1) gene expression. Indian J Pharm Sci. 2017;78(6):827-33. doi:10.4172/pharmaceutical-sciences.1000189.
  40. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 2009;7(6):e1000121. doi:10.1371/journal.pbio.1000121.
  41. Fu X, Osborne CK, Schiff R. Biology and therapeutic potential of PI3K signaling in ER+/HER2-negative breast cancer. Breast. 2013;22 Suppl 2:S12-8. doi: 10.1016/j.breast.2013.08.001.
  42. Chang CH, Ou TT, Yang MY, Huang CC, Wang CJ. Nelumbo nucifera Gaertn leaves extract inhibits the angiogenesis and metastasis of breast cancer cells by downregulation connective tissue growth factor (CTGF) mediated PI3K/AKT/ERK signaling. J Ethnopharmacol. 2016;188:111-22. doi: 10.1016/j.jep.2016.05.012.