The Role of Radical Dose of Radiotherapy in Hepatocellular Carcinoma

Maher Soliman, MD, PhD

Oncology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt

*Corresponding Author
Maher Soliman, MD
Oncology department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
Tel/Fax: (+2) 03-4848280
E-mail: maher.soliman@daad-alumni.de

Abstract

Background: The incidence of hepatocellular carcinoma has significantly increased over the last decades and the prognosis of hepatocellular carcinoma still remains poor. The present study aimed to evaluate the efficacy and safety of 3D conformal hypofractionated radiotherapy in patients with small hepatocellular carcinoma.

Method: Between 2015 and 2018, a total of 61 patients presented to our institution with hepatocellular carcinoma ≤ 5cm, who were recruited in this prospective study. All the patients underwent 3D conformal hypofractionated radiotherapy with a total dose of 51 Gy in 17 fractions. We evaluated the treatment response and toxicity and calculated the local progression-free survival and overall survival.

Results: The objective response rate was 68.9%, including seven patients (11.5%) achieving complete response and 35 patients (57.4%) with partial response. In addition, nine subjects (14.8%) had stable disease. The 1-, 2-, and 3-year overall survival rates were 65.1%, 38.7%, and 26.4%, respectively. In multivariate Cox regression model, GTV was found to be the only prognostic factor for local control ($P = 0.001$) and overall survival ($P < 0.001$). Only one patient showed grade 3 radiation-induced hepatic toxicity (1.6%).

Conclusion: 3D conformal hypofractionated radiotherapy could be effective and safe in small hepatocellular carcinoma.

Keywords: Carcinoma, Hepatocellular, Hypofractionated, Radiotherapy, Survival

Introduction
Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer worldwide and the third most common cause of cancer-related death.1,2 There has been a significant increase in the incidence of HCC among Egyptian population over the last decades.3,4 The reason behind this rising incidence could be (1) implementation of national presidential campaign of hepatitis C virus treatment, allowing further population to be registered for screening program and diagnostic tools, (2) the increased survival rate of patients with cirrhosis, which raises the chance of developing HCC, and (3) the rise in the incidence of hepatitis C virus, which is considered as the predominant risk factor in developing HCC in Egypt.3,4 Despite the great improvements in the diagnosis and treatment of HCC over the recent years, its prognosis remains poor. This is due to the difficulty in diagnosis of HCC at an early stage and quick progression. Surgery remains the mainstay treatment for localized HCC. However, surgery is often precluded by poor hepatic functional reserve, and unfortunately, liver transplantation has prolonged waiting times and waiting list for donors. Moreover, a number of patients deny surgery or unfit for surgery due to comorbidities.5-8

The recently-developed non-surgical management for unresectable HCC, such as percutaneous ethanol injection, percutaneous microwave coagulation therapy, percutaneous radiofrequency ablation, transcatheter arterial chemoembolization, and radiotherapy, have been shown to improve local tumor control, prolong survival time, and improve the quality of life to some extent.5,9 Lately, growing evidence has indicated that HCC is sensitive to radiotherapy unlike the previous general belief. In addition, the advanced radiotherapeutic techniques have broaden the therapeutic horizons by increasing the dose delivered to focal hepatic lesions and minimizing the X-ray toxicity to normal liver tissue. Despite the fact that several clinical trials have evaluated the role of radiotherapy in HCC, the optimal radiotherapy dose and fractionation still remain undetermined.10-15

The current prospective study aimed to evaluate the efficacy of radical dose of hypofractionated radiotherapy in patients with a small HCC lesion deemed unsuitable for other locoregional therapies.

Materials and Methods

Patients

In this single-arm prospective clinical trial, a total of 61 patients presented to Alexandria Main University Hospital with established diagnosis of HCC between July 2015 and June 2018, who were enrolled in the trial. The eligibility criteria were as follows: (a) primary HCC without previous treatment; (b) patients unfit for surgery due to comorbidities or who refused to undergo surgery or other ablative therapies; (c) solitary HCC lesion \(\leq 5 \) cm; (d) Child-Pugh class A or B cirrhosis; (e) Eastern Cooperative Oncology Group performance status of 0 – 1; (f) signing the informed consent. The exclusion criteria were as follows: (a) extrahepatic metastases; (b) multicentric HCC; (c) sizable lesion \(> 5 \) cm; (d) liver metastases; and/or (e) intrahepatic cholangiocarcinoma; (f) prior chemotherapy or targeted therapy. Our institutional research ethics committee approved the present work which is registered under the number 38/29/16/4/2015.

Radiation therapy

For radiotherapy planning, all the patients were simulated using computed tomography (CT) scan in the supine position with both arms raised above the
head. Every patient was instructed to fasten a graded belt to a fixed point at the level of umbilicus to restrict the respiration induced organ movement. CT scan data were transferred to the treatment planning system. The gross tumor volume (GTV) was generated based on contrast CT scan and positron emission tomography (PET) scan if available, subsequent to which a margin of 5 mm was added to create the clinical target volume (CTV). We generated the planning target volume (PTV) by adding 10 mm to CTV margin in order to allow daily set-up errors and respiratory motion of the liver. The organs at risk (OAR), including liver, kidneys, and spinal cord, were contoured and reconstructed to form a 3D representation. We designed the treatment plan as well as the field number and orientations with 3D view techniques and evaluated them using dose-volume histogram to cover the target volumes and minimize the dose delivered to OAR. A daily fraction of 3 Gy was administered to deliver a total dose of 51 Gy, which is equivalent to a BED of 66.3 Gy10 with α/β ratio = 10. Radiotherapy was delivered with a 6-10 MV linear accelerator.

Follow-up
Through physical examination, complete blood cell counts, and liver function tests, we evaluated the patients on a weekly basis during radiotherapy. CT and/or PET/CT scan studies were performed initially prior to the treatment, 3–6 months after the end of radiotherapy, and every 3–6 months thereafter. The treatment response was evaluated using the Response Evaluation Criteria in Solid Tumors (RECIST)16 and the tumor was considered as locally controlled so far there has been no progression (in field), whereas progression was defined as an increase by ≥20% in the diameter of the target tumor. Radiation-induced toxicity was graded via the Common Terminology Criteria for Adverse Events version 3.017

Statistical analysis
We carried out the analysis using SPSS software version 22 (http://www.ibm.com). The primary endpoint was local progression-free survival (LPFS), and the secondary endpoints were toxicity and overall survival (OS).

LPFS was defined as the time from the date of diagnosis to that of local tumor progression. The patients without local disease progression were censored at the last follow-up. The overall survival was calculated based on the date of diagnosis to the date of death. LPFS and OS were estimated utilizing the Kaplan–Meier product-limit method. The patients and tumor characteristics were studied to determine the effect of each variable on LPFS and OS. The age, GTV, and AFP were considered as continuous variables. We categorized the subjects into dichotomous groups according to gender (male versus female), Child-Pugh class (A versus B), and portal vein thrombosis (yes versus no). Multivariate analyses were performed to determine the importance of each variable in the presence of other variables. Cox proportional hazard regression model was used (enter method) to select the best predictor factor for each endpoint. P ≤ 0.05 was considered to be significant.

Results
We assessed 61 patients with a median follow-up of 14 months (range: 2–42 months). Only four patients were female, the majority of whom (91.8%) had cirrhosis Child-Pugh class A. The median GTV was 52.8 (range 24.8-102.9 cm³). The tumor was localized in left lobe in about two-third of the patients. All the participants had hepatitis C virus, except for three, who had hepatitis B virus. Ten patients had portal vein thrombosis.
The objective response rate was 68.9%, including seven patients (11.5%) achieving complete response and 35 patients (57.4%) with partial response. In addition, nine cases (14.8%) had stable disease. Local tumor progression was observed in 10 patients (16.4%). The LPFS rate at 12 months was 83.6%, which was maintained to 36 months (Figure 1). At the time of the analysis, six patients were alive. The median OS was 17 months and the overall survival rate at years 1, 2, and 3 were 65.1%, 38.7%, and 26.4%, respectively (Figure 2). According to multivariate Cox regression model, GTV was the only prognostic factor for both LPFS ($P = 0.001$) and OS ($P = 0.000$) with patients presented with smaller tumor having significantly more favorable outcomes (Table 2).

Acute radiation-induced hepatic toxicity was observed as grade 1 in 23 patients (37.7%), grade 2 in seven patients (11.5%), and only one patient (1.6%) experienced grade 3. We observed no apparent late hepatic toxicity.

Discussion

HCC is a major global health issue as most of patients present in advanced stages due to non specific symptoms. In addition, nearly all patients have underlying cirrhotic diseased liver, which impairs the efficacy of the available anti-cancerous treatments (systemic chemotherapy and conventional external beam radiotherapy therapy). Finally, the whole liver is liable to develop denovo tumor lesions, as the liver is diffusely affected by cirrhosis. 3D conformal radiotherapy (3D-CRT) is a noninvasive well-tolerated treatment modality, which is highly suitable for patients with small HCCs in cirrhotic liver, who deny other local ablative therapies. Since there is accumulating evidence suggesting a dose-response relationship in the irradiation of HCC, we tried to escalate the dose without increasing the overall treatment time and fractionations in this study. Hence, a hypofractionated short course treatment with a total dose of 51 Gy was delivered in 17 fractions. This schedule is translated to a BED of 66.3 Gy10 with the α/β ratio = 10, which could be considered as a radical dose.

It is difficult to compare the outcomes of radiotherapy in HCC patients between publications on account of the differences concerning treatment regimens, doses, fractionation schemes, radiotherapy techniques, and endpoint definitions, in addition to heterogeneous patient populations. In the present study, the objective response rate was 68.9%. Our data are consistent with those reported by Huang et al. who evaluated 40 patients with HCC. They were treated via hypofractionated radiotherapy with a fraction size of 3 Gy and a total dose of 40-66 Gy in 14-23 fractions. The authors reported an objective response rate of 70.0%. Similar to our results, Park et al. evaluated 59 patients treated with localized radiotherapy with a curative intent. They found that 66.1% of the subjects achieved an objective tumor response, with complete response in 8.5% patients and partial response in 57.6% patients. Oh et al. in a prospective study, also reported an objective response of 62.8% in 40 patients with unresectable HCC treated via hypofractionated 3D-CRT. Comparable to our results, Seong et al. documented that the response rate was 67.1% in 158 patients with unresectable HCC treated with radiotherapy. Liu et al. reported an objective response of 61.4% in 44 patients with unresectable HCC, who underwent 3D-CRT.

On the contrary to our findings, Liang et al. reported that the response rate for hypofractionated 3D-CRT in HCC was
55%, which is inferior to our results. Additionally, Seo et al.22 evaluated the efficacy of radiotherapy in 65 patients with unresectable HCC and stated that the objective response was 56.9%. Kim et al.12 evaluated 3D-CRT in 70 unresectable HCC patients and found a response rate of 54.3%. This may be due to the larger tumor size and lower total dose received in these three studies compared to those in our work.

In the current research, the LPFS rate at 12 months was 83.6%. This is consistent with Bae et al.23 who reported that in-field local control was achieved in 85% of 20 patients with recurrent small HCC treated with hypofractionated radiotherapy after the failure of previous treatment. In another report, Park et al.15 showed that the in-field failure rate was 16.9% for patients treated with doses >50 Gy10, and concluded that a BED of 50 Gy10 was a criterion for an effective radiation dose.

Our results demonstrated that the overall survival rate at years 1, 2, and 3 were 65.1%, 38.7%, and 26.4%, respectively. In line with our findings, Liu et al.20 stated that the survival rates at years 1, 2, and 3 were respectively 60.5%, 40.3%, and 32.0% in 44 patients with unresectable HCC, who underwent 3D-CRT. Similarly, Liang et al.21 presented a report about hypofractionated 3D-CRT for HCC and found the overall survival rates at years 1, 2, and 3 to be 65%, 43%, and 33%, respectively. In another study by Huang et al.18 they reported that the 1- and 2-year overall survival rates in 40 patients with HCC treated via hypofractionated radiotherapy were 60% and 40%, respectively.

As expected, in the present study, GTV was found to be a prognostic factor for overall survival in multivariate analysis. Similarly, Liang et al.21 reported that the GTV was identified through Cox regression analysis as independent predictors for survival in HCC, who underwent hypofractionated 3D-CRT. Moreover, Seong et al.13 analyzed the treatment results in 158 patients with unresectable hepatocellular carcinoma, who received local radiotherapy, and reported that tumor size was a significant factor associated with survival.

Herein, radiotherapy was tolerable with only one patient experiencing grade 3 radiation-induced liver toxicity. In accordance with our study, Li et al.24 reported that radiotherapy was well-tolerated; severe adverse effects were only observed in two patients who presented with deterioration of liver function. Oh et al.19 prospectively evaluated the toxicity of 3D-CRT in 40 patients with unresectable HCC and found no grade 3 or greater acute toxicity. Bae et al.23 observed no grade 3 or greater treatment-related toxicities in 20 patients with recurrent small HCC treated with hypofractionated radiotherapy. Park et al.15 evaluated 59 patients who were treated with localized radiotherapy with a curative intent, and found no grade 3 or 4 acute toxicity.

The current study was a single-arm study with a small sample size. However, our research included patients with HCC, who received homogenous 3D-CRT protocols at a single institution. Furthermore, to the best of our knowledge, this is the first prospective study of 3D-CRT dose escalation for HCC in Egyptian population. The current investigation adds to the growing evidence on the efficiency and tolerability of radiotherapy. Moreover, hypofractionated schedules have the advantage of being more convenient for the patient and helping to save medical resources. Therefore, well-designed large prospective randomized studies are warranted.

\textbf{Conclusion}
In conclusion, radical dose 3D conformal hypofractionated radiotherapy for HCC could be effective with satisfactory high rates of tumor control, overall survival, and acceptable treatment-related toxicity. This study presented an alternative convenient therapy for those with small tumor size, who deny other local therapies or where stereotactic body radiotherapy is unavailable.

Conflict of Interest
None declared.

References

Table 1. Patient and tumor characteristics of 61 patients with HCC, who were treated via 3D conformal radiotherapy

<table>
<thead>
<tr>
<th>Variables</th>
<th>No</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median)</td>
<td>56y</td>
<td>(range: 34-77)</td>
</tr>
<tr>
<td>GTV (median)</td>
<td>52.8</td>
<td>(range: 24.8-102.9 cm³)</td>
</tr>
<tr>
<td>AFP(IU/mL) (median)</td>
<td>300</td>
<td>(range: 2.4 -83134)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>57</td>
<td>(93.4)</td>
</tr>
<tr>
<td>Female</td>
<td>4</td>
<td>(6.6)</td>
</tr>
<tr>
<td>Child-Pugh class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>56</td>
<td>(91.8)</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>(8.2)</td>
</tr>
<tr>
<td>Lobe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>20</td>
<td>(32.8)</td>
</tr>
<tr>
<td>Left</td>
<td>41</td>
<td>(67.2)</td>
</tr>
<tr>
<td>PVT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>51</td>
<td>83.6</td>
</tr>
<tr>
<td>Yes</td>
<td>10</td>
<td>16.4</td>
</tr>
<tr>
<td>Hepatitis virus type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV</td>
<td>58</td>
<td>95.1</td>
</tr>
<tr>
<td>HBV</td>
<td>3</td>
<td>4.9</td>
</tr>
</tbody>
</table>

GTV: Gross tumor volume; AFP: α-fetoprotein; PVT: Portal vein thrombosis; HCV: Hepatitis C virus; HBV: Hepatitis B virus

Table 2. Multivariate analysis of the local progression-free survival and overall survival of 61 patients with HCC, who were treated via 3D conformal radiotherapy

<table>
<thead>
<tr>
<th>Variables</th>
<th>Local progression-free survival</th>
<th>Overall survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P-Value</td>
<td>OR</td>
</tr>
<tr>
<td>Age</td>
<td>0.512</td>
<td>0.975</td>
</tr>
<tr>
<td>GTV</td>
<td>0.001</td>
<td>1.059</td>
</tr>
<tr>
<td>AFP</td>
<td>0.821</td>
<td>1.000</td>
</tr>
<tr>
<td>PVT</td>
<td>0.772</td>
<td>0.731</td>
</tr>
</tbody>
</table>

OR: Odds ratio; GTV: Gross tumor volume; AFP: α-fetoprotein; PVT: Portal vein thrombosis
Figure 1. This figure shows the local progression-free survival rate of 61 patients with HCC, who were treated via 3D conformal radiotherapy.
Figure 2. This figure shows the overall survival rate of 61 patients with HCC, who were treated via 3D conformal radiotherapy.