Document Type : Original Article(s)

Authors

1 Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran

2 Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

3 Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran0000-0003-4009-717X

4 Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran Department of Hematology and Oncology, Imam Khomeini Hospital, Mazandaran University of Medical Science, Sari, Iran

10.30476/mejc.2026.105538.2238

Abstract

Background: Small molecule inhibitors are the new therapeutic approaches for many cancers, but their exact mechanisms in tumor evasion and expansion remains unknown. The present study aimed to evaluate the expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3) and signal transducers and activators of transcription 3 (STAT3) in isolated leukemic cells from patients with chronic lymphocytic leukemia (CLL) following treatment with ibrutinib and idelalisib.
Method: In this in-vitro experimental study, leukemic B cells were isolated from CLL patients, cultured and treated with ibrutinib and idelalisib for 72 hours. The optimal IC50 values of 5 and 15 µM were determined for ibrutinib and idelalisib, respectively. Following treatment, the mRNA expression of these genes was measured by Real-time polymerase chain reaction assay using β-actin as a housekeeping control. One-way analysis of variance (ANOVA) test was employed for multiple comparisons. P-values of <0.05 were considered to be statistically significant.
Results: Isolation of CLL cells showed the purity of >97% as confirmed by flow cytometry. Leukemic cells indicated a significance reduction in cell viability following treatment with applied drugs compared with the untreated group. Treatment with ibrutinib showed a relative decrease in CTLA-4 (P = 0.09) and a relative increase in the LAG-3 and the STAT3 expression. Idelalisib indicated a significant increase in the STAT3 expression (P = 0.04) and also modulation in the CTLA-4 and LAG-3 expression (P > 0.05).
Conclusion: These data show that ibrutinib and idelalisib not only serve as cytotoxic drugs, but also influence the immune escape mechanisms of CLL cells by disrupting the signaling pathways which should be considered for further treatment approaches, especially for combinational strategies.

Highlights

Hossein Asgarian-Omran (google scholar)

Saeid Taghiloo (google scholar)

 

Keywords

Main Subjects

Please cite this article as: Mousavi-Mirkalaei F, Taghiloo S, Ghasemi AA, Zaboli E, Eslami-Jouybari M, Shekarriz R, Mirzakhani L, Ehsani Z, Alizadeh-Foroutan M, Asgarian-Omran H. Modulation of CTLA-4, STAT3 and LAG-3 Expression by Ibrutinib and Idelalisib in Leukemic Cells of Patients with Chronic Lymphocytic Leukemia. Middle East J Cancer. 2026; 17(3): p-p. doi: 10.30476/mejc.2026.105538.2238.

  1. Grywalska E, Bartkowiak-Emeryk M, Pasiarski M, Olszewska-Bożek K, Mielnik M, Podgajna M, et al. Relationship between the expression of CD25 and CD69 on the surface of lymphocytes T and B from peripheral blood and bone marrow of patients with chronic lymphocytic leukemia and established prognostic factors of this disease. Adv Clin Exp Med. 2018;27(7):987-99. doi: 10.17219/acem/74437. PMID: 29893517.
  2. Braish J, Cerchione C, Ferrajoli A. An overview of prognostic markers in patients with CLL. Front Oncol. 2024;14:1371057. doi: 10.3389/fonc.2024.1371057. PMID: 38817892; PMCID: PMC11137234.
  3. Cantú ES, McGill JR, Stephenson CF, Hoffmann HM, Tang L, Yan J, et al. Male-to-female sex ratios of abnormalities detected by fluorescence in situ hybridization in a population of chronic lymphocytic leukemia patients. Hematol Rep. 2013;5(1):13-7. doi: 10.4081/hr.2013.e4. PMID: 23888240; PMCID: PMC3719107.
  4. Strati P, Shanafelt TD. Monoclonal B-cell lymphocytosis and early-stage chronic lymphocytic leukemia: diagnosis, natural history, and risk stratification. Blood. 2015;126(4):454-62. doi: 10.1182/blood-2015-02-585059. PMID: 26065657; PMCID: PMC4624440.
  5. Jakšić B, Pejša V, Ostojić-Kolonić S, Kardum-Skelin I, Bašić-Kinda S, Coha B, et al. Guidelines for diagnosis and treatment of chronic lymphocytic leukemia. Krohem B-Cll 2017. Acta Clin Croat. 2018;57(1):190-215. doi: 10.20471/acc.2018.57.01.27. PMID: 30256032; PMCID: PMC6400341.
  6. Hampel PJ, Parikh SA. Chronic lymphocytic leukemia treatment algorithm 2022. Blood Cancer J. 2022;12(11):161. doi: 10.1038/s41408-022-00756-9. PMID: 36446777; PMCID: PMC9708674.
  7. Kay NE, LaPlant BR, Pettinger AM, Call TG, Leis JF, Ding W, et al. Cumulative experience and long term follow-up of pentostatin-based chemoimmunotherapy trials for patients with chronic lymphocytic leukemia. Expert Rev Hematol. 2018;11(4):337-49. doi: 10.1080/17474086.2018.1442716. PMID: 29460654.
  8. Kuss B, Nagarajan C, Hsieh WS, Cheah CY. Practical management of chronic lymphocytic leukemia with acalabrutinib. Leuk Lymphoma. 2022;63(12):2785-94. doi: 10.1080/10428194.2022.2098289. PMID: 35852229.
  9. Jain N, Thompson P, Ferrajoli A, Nabhan C, Mato AR, O’Brien S. Approaches to chronic lymphocytic leukemia therapy in the era of new agents: The conundrum of many options. Am Soc Clin Oncol Educ Book. 2018(38):580-91. doi: 10.1200/EDBK_200691. PMID: 30231393.
  10. Smolewski P, Robak T. Current Treatment of refractory/relapsed chronic lymphocytic leukemia: A focus on novel drugs. Acta Haematol. 2021;144(4):365-79. doi: 10.1159/000510768. PMID: 33238270.
  11. Bedard PL, Hyman DM, Davids MS, Siu LL. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet. 2020;395(10229):1078-88. doi: 10.1016/S0140-6736(20)30164-1. PMID: 32222192.
  12. Pastorczak A, Domka K, Fidyt K, Poprzeczko M, Firczuk M. Mechanisms of immune evasion in acute lymphoblastic leukemia. Cancers. 2021;13(7):1536. doi: 10.3390/cancers13071536. PMID: 33810515; PMCID: PMC8037152.
  13. Taghiloo S, Norozi S, Asgarian-Omran H. The effects of PI3K/Akt/mTOR signaling pathway inhibitors on the expression of immune checkpoint ligands in acute myeloid leukemia cell line. Iran J Allergy Asthma Immunol. 2022;21(2):178-88. doi: 10.18502/ijaai.v21i2.9225. PMID: 35490271.
  14. Ranjbar A, Taghiloo S, Nozari P, Hedayatizadeh-Omran A, Asgarian-Omran H. Effects of c-Kit receptor, AKT, and NF-κB inhibitors on immune evasion in multiple myeloma cells. Iran J Allergy Asthma Immunol. 2025;24(1):89-99. doi: 10.18502/ijaai.v24i1.18024. PMID: 40052893.
  15. Forconi F, Moss P. Perturbation of the normal immune system in patients with CLL. Blood. 2015;126(5):573-81. doi: 10.1182/blood-2015-03-567388. PMID: 26084672.
  16. Severin F, Frezzato F, Visentin A, Martini V, Trimarco V, Carraro S, et al. In chronic lymphocytic leukemia the JAK2/STAT3 pathway is constitutively activated and its inhibition leads to CLL cell death unaffected by the protective bone marrow microenvironment. Cancers. 2019;11(12):1939. doi: 10.3390/cancers11121939. PMID: 31817171; PMCID: PMC6966457.
  17. Asgarian-Omran H, Forghani P, Hojjat-Farsangi M, Roohi A, Sharifian RA, Razavi SM, et al. Expression profile of galectin-1 and galectin-3 molecules in different subtypes of chronic lymphocytic leukemia. Cancer Invest. 2010;28(7):717-25. doi:10.3109/07357907.2010.494319. PMID: 20590446.
  18. Shapiro M, Herishanu Y, Katz BZ, Dezorella N, Sun C, Kay S, et al. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Haematologica. 2017;102(5):874. doi: 10.3324/haematol.2016.148965. PMID: 28154084; PMCID: PMC5477606.
  19. Ciszak L, Frydecka I, Wolowiec D, Szteblich A, Kosmaczewska A. CTLA-4 affects expression of key cell cycle regulators of G0/G1 phase in neoplastic lymphocytes from patients with chronic lymphocytic leukaemia. Clin Exp Med. 2016;16(3):317-32. doi: 10.1007/s10238-015-0360-7. PMID: 26003188; PMCID: PMC4969362.
  20. Do P, Beckwith KA, Cheney C, Tran M, Beaver L, Griffin BG, et al. Leukemic B cell CTLA-4 suppresses costimulation of T cells. J Immunol. 2019;202(9):2806-16. doi: 10.4049/jimmunol.1801359. PMID: 30910862; PMCID: PMC6478536.
  21. Herrmann A, Lahtz C, Nagao T, Song JY, Chan WC, Lee H, et al. CTLA4 Promotes Tyk2-STAT3–Dependent B-cell Oncogenicity. Can Res. 2017;77(18):5118-28. doi: 10.1158/0008-5472.CAN-16-0342. PMID: 28716895; PMCID: PMC5600851.
  22. Ma W, Zhang Y, Qi Y, Guo S. STAT3 promotes chronic lymphocytic leukemia progression through upregulating SMYD3 expression. Arch Med Sci. 2019;15(5):1163-75. doi: 10.5114/aoms.2018.77733. PMID: 31572461; PMCID: PMC6764298.
  23. Soltanshahi M, Taghiloo S, Asgarian-Omran H. Expression modulation of immune checkpoint molecules by ibrutinib and everolimus through STAT3 in MCF-7 breast cancer cells. Iran J Pharm Res. 2022;21(1):e127352. doi: 10.5812/ijpr-127352. PMID: 35873012; PMCID: PMC9293249.
  24. Ranjbar A, Soltanshahi M, Taghiloo S, Asgarian-Omran H. Glucose metabolism in acute myeloid leukemia cell line is regulated via combinational PI3K/AKT/mTOR pathway inhibitors. Iran J Pharm Res. 2023;22(1):e140507. doi: 10.5812/ijpr-140507. PMID: 38435444; PMCID: PMC10909123.
  25. Taghiloo S, Ajami A, Alizadeh-Navaei R, Zaboli E, Asgarian-Omran H. Treatment by PI3K/mTOR inhibitor BEZ235 combined with TLR-7/8 agonist interfere with immune evasion mechanisms of WEHI-3 mouse leukemia cells. Iran J Immunol. 2022;19(1):6. doi: 10.22034/IJI.2022.92576.2155. PMID: 35293347.
  26. Mousavi-Mirkalaei F, Taghiloo S, Alizadeh-Foroutan M, Zaboli E, Eslami-Jouybari M, Shekarriz R, et al. Expression modulation of immune inhibitory molecules by small molecule inhibitor drugs in leukemic cells of chronic lymphocytic leukemia. Iran J Pharm Res. 2025;12;24(1):e159353. doi: 10.5812/ijpr-159353. PMID: 41104252; PMCID: PMC12523818.
  27. Wen T, Wang J, Shi Y, Qian H, Liu P. Inhibitors targeting Bruton's tyrosine kinase in cancers: drug development advances. Leukemia. 2021;35(2):312-32. doi: 10.1038/s41375-020-01072-6. PMID: 33122850; PMCID: PMC7862069.
  28. Sharma S. Signaling pathways and novel inhibitors in chronic lymphocytic leukemia. Federal Practitioner. 2014;31(8):18-22.
  29. Rohrbacher L, Brauchle B, Ogrinc Wagner A, von Bergwelt-Baildon M, Bücklein VL, Subklewe M. The PI3K∂-selective inhibitor idelalisib induces T-and NK-cell dysfunction independently of B-cell malignancy-associated immunosuppression. Front Immunol. 2021;12:557. doi: 10.3389/fimmu.2021.608625. PMID: 33790890; PMCID: PMC8005712.
  30. Mhibik M, Gaglione EM, Eik D, Kendall EK, Blackburn A, Keyvanfar K, et al. BTK inhibitors, irrespective of ITK inhibition, increase efficacy of a CD19/CD3-bispecific antibody in CLL. Blood. 2021;138(19):1843-54. doi: 10.1182/blood.2020009686. PMID: 34046681; PMCID: PMC8586964.
  31. Boudny M, Trbusek M. The important role of STAT3 in chronic lymphocytic leukaemia biology. Klin Onkol. 2020;33:32-8. doi: 10.14735/amko202032. PMID: 32075387.
  32. Shi Y, Guryanova OA, Zhou W, Liu C, Huang Z, Fang X, et al. Ibrutinib inactivates BMX-STAT3 in glioma stem cells to impair malignant growth and radioresistance. Sci Ttransl Med. 2018;10(443). eaah6816. doi: 10.1126/scitranslmed.aah6816. PMID: 29848664; PMCID: PMC6431250.
  33. Shapiro M, Herishanu Y, Katz BZ, Dezorella N, Sun C, Kay S, et al. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Haematologica. 2017;102(5):874-82. doi: 10.3324/haematol.2016.148965. PMID: 28154084; PMCID: PMC5477606.