Document Type : Original Article(s)

Authors

1 Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran

2 , MSc in Anatomical Sciences, Ayatollah Khansari Hospital, Arak University of Medical Sciences, Arak, Iran

3 Student Research Committee, Department of Epidemiology and Biostatistics , School of Public Health, Mashhad University of Medical Sciences, Mashhad, Iran.

4 Shahid Soleimani hospital, Alborz university of medical Sciences, Fardis, Alborz, Iran

5 Kamali Hospital, Alborz university of medical Sciences, Karaj, Alborz, Iran

6 Department of Radiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran

10.30476/mejc.2025.104660.2198

Abstract

Background: Cancer patients are particularly vulnerable to coronavirus disease of 2019 (COVID-19) due to their clinical characteristics. The present study investigated factors influencing COVID-19 mortality in cancer versus non-cancer patients.
Method: We retrospectively analyzed medical records of 801 COVID-19 patients, including 738 non-cancer patients and 63 cancer patients at Ayatollah Khansari Hospital, Arak, from March 2018 to March 2019. Data on laboratory results, medications, clinical symptoms, medical history, and imaging findings were collected. Logistic regression assessed the relationship between cancer status and mortality, controlling for age and gender.
Results: Multivariable logistic regression showed higher mortality risk in patients aged ≥60 (Odds ratio (OR) = 1.61, 95% confidence interval (CI) = 1.01–2.60) and men (OR = 1.86, 95% CI = 1.12–3.15). The use of anticoagulants (OR = 2.13, 95% CI = 1.18–4.02) and antibiotics (OR = 1.30, 95% CI = 1.07–1.58) increased mortality risk while corticosteroid use reduced it (OR = 0.35, 95% CI = 0.21–0.60). Non-cancer patients had a 59% lower risk of death compared with cancer patients (OR = 0.41, 95% CI = 0.20–0.88).
Conclusion: Cancer patients with COVID-19 face significantly higher mortality risks. Tailoring treatment plans, prioritizing vaccination, and enhancing therapeutic interventions for this vulnerable group are essential.

Keywords

Main Subjects

Please cite this article as: Hendudari F, Akbari Sharak N, Baniasadipour B, Ansari F, Bagheri F, Otroshi B. Factors Influencing COVID-19 Mortality in Cancer and Non-Cancer Patients: A Comparative Study at Ayatollah Khansari Hospital in Arak. Middle East J Cancer. 2026; 17(2): p-p. doi: 10.30476/mejc.2025.104660.2198.

  1. Miyashita H, Mikami T, Chopra N, Yamada T, Chernyavsky S, Rizk D, et al. Do patients with cancer have a poorer prognosis of COVID-19? An experience in New York City. Ann Oncol. 2020;31(8):1088-9. doi: 10.1016/j.annonc.2020.04.006. PMID: 32330541; PMCID: PMC7172785.
  2. Yang F, Shi S, Zhu J, Shi J, Dai K, Chen X. Clinical characteristics and outcomes of cancer patients with COVID-19. J Med Virol. 2020;92(10):2067-73. doi: 10.1002/jmv.25972. PMID: 32369209.
  3. Mandala M, Lorigan P, De Luca M, Bianchetti A, Merelli B, Bettini AC, et al. SARS-CoV-2 infection and adverse events in patients with cancer receiving immune checkpoint inhibitors: an observational prospective study. J Immunother Cancer. 2021;9(2):e001694. doi: 10.1136/jitc-2020-001694. Erratum in: J Immunother Cancer. 2021;9(10):e001694corr1. doi: 10.1136/jitc-2020-001694corr1. PMID: 33593827; PMCID: PMC7887862.
  4. Gallo Marin B, Aghagoli G, Lavine K, Yang L, Siff EJ, Chiang SS, et al. Predictors of COVID-19 severity: A literature review. Rev Med Virol. 2021;31(1):1-10. doi: 10.1002/rmv.2146. PMID: 32845042; PMCID: PMC7855377.
  5. Talkhi N, Akbari Sharak N, Pasdar Z, Salari M, Sadati SM, Shakeri MT. Potential pathological, clinical, and symptomatic findings of COVID-19 to predict mortality in positive PCR individuals using data mining. Journal of Patient Safety and Quality Improvement (PSQI J). 2023;11(1):13-21. doi: 10.22038/psj.2023.70741.1390.
  6. Talkhi N, Akbari Sharak N, Yousefi R, Salari M, Sadati SM, Shakeri MT. Predicting COVID-19 mortality and identifying clinical symptom patterns in hospitalized patients: A machine-learning study. Iran J Health Sci. 2024;12(1):39-48. doi: 10.32598/ijhs.12.1.952.1.
  7. Talkhi N, Akbari Sharak N, Rajabzadeh Z, Salari M, Sadati SM, Shakeri MT. Identification symptoms and underlying diseases related to COVID-19 and prediction of death status using artificial neural network and logistic regression: A data mining approach. [In Persian] Iranian Journal of Epidemiology (IRJE). 2022;18(3):244-54.
  8. Vankerckhoven A, Baert T, Riva M, De Bruyn C, Thirion G, Vandenbrande K, et al. Type of chemotherapy has substantial effects on the immune system in ovarian cancer. Transl Oncol. 2021;14(6):101076. doi: 10.1016/j.tranon.2021.101076. PMID: 33770618; PMCID: PMC8022256.
  9. Indini A, Rijavec E, Ghidini M, Bareggi C, Cattaneo M, Galassi B, et al. Coronavirus infection and immune system: An insight of COVID-19 in cancer patients. Critical Reviews in Oncology/Hematology.  2020;153:103059. doi: 10.1016/j.critrevonc.2020.103059. PMCID: PMC7347348 PMID: 32711241
  10. Faraji K, Neamatzade S, Saboori H. Radiation effect on the number of circulating blood cells in patients receiving radiation therapy in Tohid hospital of Sanandaj in 2014. [In Persian] Zanko J Med Sci. 2014;15(46):49-58.
  11. Rüthrich MM, Giessen-Jung C, Borgmann S, Classen AY, Dolff S, Grüner B, et al. COVID-19 in cancer patients: clinical characteristics and outcome-an analysis of the LEOSS registry. Ann Hematol. 2021;100(2):383-93. doi: 10.1007/s00277-020-04328-4. PMID: 33159569; PMCID: PMC7648543.
  12. Nowroozi A, Razi S, Sahu KK, Grizzi F, Arends J, Keshavarz-Fathi M, et al. COVID-19 in patients with cancer. Adv Exp Med Biol. 2021;1318:315-31. doi: 10.1007/978-3-030-63761-3_18. PMID: 33973186.
  13. Boateng EY, Abaye DA. A review of the logistic regression model with emphasis on medical research. Journal of Data Analysis and Information Processing. 2019;7(4):190-207. doi: 10.4236/jdaip.2019.74012.
  14. Tolles J, Meurer WJ. Logistic regression: Relating patient characteristics to outcomes. JAMA. 2016;316(5):533-4. doi: 10.1001/jama.2016.7653. PMID: 27483067.
  15. Erdal GS, Polat O, Erdem GU, Korkusuz R, Hindilerden F, Yilmaz M, et al. The mortality rate of COVID-19 was high in cancer patients: a retrospective single-center study. Int J Clin Oncol. 2021;26(5):826-34. doi: 10.1007/s10147-021-01863-6. PMID: 33486624; PMCID: PMC7826293.
  16. He W, Chen L, Chen L, Yuan G, Fang Y, Chen W, et al. COVID-19 in persons with haematological cancers. Leukemia. 2020;34(6):1637-45. doi: 10.1038/s41375-020-0877-y. PMCID: PMC7250492; PMID: 32457356.
  17. Erdur E, Yildirim OA, Poyraz K, Canan C, Komek H. Clinical, laboratory and radiologic course and prognosis of COVID-19 in cancer patients and comparison with general population: A single-center experience. International Journal of Hematology and Oncology. 2021;31(2):106-14. doi: 10.4999/uhod.214718.
  18. Jiang L, Li Y, Du H, Qin Z, Su B. Effect of anticoagulant administration on the mortality of hospitalized patients with COVID-19: An updated systematic review and meta-analysis. Front Med (Lausanne). 2021;8:698935. doi: 10.3389/fmed.2021.698935. PMID: 34422860; PMCID: PMC8371681.
  19. Ahmad H, Butt M, Ragatha R, Naik S, Ekeowa U, Russell P, et al. The impact of age, gender and active cancer in the mortality and the length of in-patient stay of patients with COVID-19 at a UK District general hospital. TP003 COVID-19 INFECTIONS, MECHANISMS, AND CLINICAL IMPLICATIONS. Am J Respir Crit Care Med. 2021;203:A1286.
  20. Russell B, Moss CL, Shah V, Ko TK, Palmer K, Sylva R, et al. Risk of COVID-19 death in cancer patients: an analysis from Guy's Cancer Centre and King's College Hospital in London. Br J Cancer. 2021;125(7):939-47. doi: 10.1038/s41416-021-01500-z. PMID: 34400804; PMCID: PMC8366163.
  21. Nimgaonkar I, Valeri L, Susser E, Hussain S, Sunderram J, Aviv A. The age pattern of the male-to-female ratio in mortality from COVID-19 mirrors that of cardiovascular disease in the general population. Aging (Albany NY). 2021;13(3):3190-3201. doi: 10.18632/aging.202639. Epub 2021 Feb 7. PMID: 33550276; PMCID: PMC7906174.
  22. Annane D. Corticosteroids for COVID-19. J Intensive Med. 2021;1(1):14-25. doi: 10.1016/j.jointm.2021.01.002. PMID: 36943816; PMCID: PMC7919540.
  23. Hooshmand N, Zarei B, Mireskandari ZS, Sheybani F, Haddad M, Elyasi S, et al. Antibiotic use in patients with COVID-19: A hospital-based single-center study in Iran. Infectious Diseases in Clinical Practice. 2024;32(1):e1324.doi: 10.1097/IPC.0000000000001324
  24. Ortenberg EA. Almost two years with COVID-19: Some aspects of antibiotic use. [In Russian] Clinical Microbiology and Antimicrobial Chemotherapy. 2021;23(3):248-53. doi: 10.36488/cmac.2021.3.248-253.
  25. Ubeda C, Pamer EG. Antibiotics, microbiota, and immune defense. Trends Immunol. 2012;33(9):459-66. doi: 10.1016/j.it.2012.05.003. PMID: 22677185; PMCID: PMC3427468.
  26. Musoke N, Lo KB, Albano J, Peterson E, Bhargav R, Gul F, et al. Anticoagulation and bleeding risk in patients with COVID-19. Thromb Res. 2020;196:227-30. doi: 10.1016/j.thromres.2020.08.035. PMID: 32916565; PMCID: PMC7444469.
  27. Singh A, Dhir A, Kajal K, Naik NB, Lazar MS, Puri GD, et al. Incidence & outcomes of clinically significant bleeding events in critically ill COVID-19 patients receiving Therapeutic dose AntiCoagulanTs: A retrospective cohort study (INTerACT study). Indian J Med Res. 2022;155(5&6):526-37. doi: 10.4103/ijmr.ijmr_2292_21. PMID: 36124497; PMCID: PMC9807207.
  28. Anggarany AD, Sauriasari R, Alkaff M, Takhwifa F, Nufus H, Paramita D. The effect of heparinoid as systemic prophylactic anticoagulants on COVID-19 patient mortality and its safety profiles: A systematic review and meta-analysis. Pharmaceutical Sciences and Research. 2021;8(3):103-20. doi: 10.7454/psr.v8i3.1230.