Document Type : Original Article(s)

Authors

1 Department of Radiology, Faculty of Medicine UiTM, Sungai Buloh Campus, Selangor, Malaysia.

2 DEPARTMENT OF RADIOLOGY, FACULTY OF MEDICINE UITM

3 Department of Biomedical Imaging, University of Malaya Research Imaging Centre, Universiti Malaya, Kuala Lumpur, Malaysia

10.30476/mejc.2025.104422.2180

Abstract

Introduction: Accurate local staging is crucial for breast cancer treatment planning. This study aimed to compare the measurements of tumour size and distance from the nipple using Automated Breast Ultrasound (ABUS) and Magnetic Resonance Imaging (MRI) in a Malaysian cohort.
Materials and Methods: A retrospective study was conducted on 36 women (49 breast lesions) who underwent both MRI and ABUS. Two breast radiologists independently assessed the anonymized images. Tumour size and distance from the nipple were measured and compared between modalities. Statistical analysis was performed using SPSS version 25.0, by employing Student's t-test and kappa analysis, with a significance level of P<0.001.
Results: The mean tumour size was 27.2mm on ABUS and 28.3mm on MRI, with a statistically significant difference (P<0.001). MRI also measured a significantly greater distance from the nipple (P<0.001). Inter-reader agreement was excellent for breast density assessment but not for lesion description.
Conclusion: ABUS and MRI demonstrate comparable performance in preoperative breast cancer staging, although MRI tends to give a larger tumour size and distance measurement from the nipple. Both modalities can contribute to local staging, aiding treatment decisions.

Highlights

Marlina Tanty Ramli Hamid (google scholar)

Nazimah Ab Mumin(google scholar)

Keywords

Main Subjects

Please cite this article as: Ramli Hamid MT, Abdul Hamid S, Ab Mumin N, Rahmat K. A Comparative Study of Automated Breast Ultrasound and Magnetic Resonance Imaging for Local Breast Cancer Staging in Malaysia. Middle East J Cancer. 2026; 17(2): p-p. doi: 10.30476/mejc.2025.104422.2180.

 

  1. Htay MNN, Donnelly M, Schliemann D, Loh SY, Dahlui M, Somasundaram S, Ibrahim Tamin NSB, Su TT. Breast Cancer Screening in Malaysia: A Policy Review. Asian Pac J Cancer Prev. 2021 Jun 1;22(6):1685-1693. doi: 10.31557/APJCP.2021.22.6.1685. PMID: 34181322; PMCID: PMC8418850.
  2. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021 Apr 5. doi: 10.1002/ijc.33588. Epub ahead of print. PMID: 33818764.
  3. Zhu H, Doğan BE. American Joint Committee on Cancer's Staging System for Breast Cancer, Eighth Edition: Summary for Clinicians. Eur J Breast Health. 2021 Jun 24;17(3):234-238. doi: 10.4274/ejbh.galenos.2021.2021-4-3. PMID: 34263150; PMCID: PMC8246053.
  4. Teichgraeber DC, Guirguis MS, Whitman GJ. Breast Cancer Staging: Updates in the AJCC Cancer Staging Manual, 8th Edition, and Current Challenges for Radiologists, From the AJR Special Series on Cancer Staging. AJR Am J Roentgenol. 2021 Aug;217(2):278-290. doi: 10.2214/AJR.20.25223. Epub 2021 Feb 17. PMID: 33594908.
  5. Washington I, Palm RF, White J, Rosenberg SA, Ataya D. The Role of MRI in Breast Cancer and Breast Conservation Therapy. Cancers (Basel). 2024 Jun 1;16(11):2122. doi: 10.3390/cancers16112122. PMID: 38893241; PMCID: PMC11171236.
  6. Eisen A, Fletcher GG, Fienberg S, George R, Holloway C, Kulkarni S, Seely JM, Muradali D. Breast Magnetic Resonance Imaging for Preoperative Evaluation of Breast Cancer: A Systematic Review and Meta-Analysis. Can Assoc Radiol J. 2024 Feb;75(1):118-135. doi: 10.1177/08465371231184769. Epub 2023 Aug 18. PMID: 37593787.
  7. Thompson JL, Wright GP. The role of breast MRI in newly diagnosed breast cancer: An evidence-based review. Am J Surg. 2021 Mar;221(3):525-528. doi: 10.1016/j.amjsurg.2020.12.018. Epub 2020 Dec 9. PMID: 33339617.
  8. Rahmat K, Mumin NA, Hamid MTR, Hamid SA, Ng WL. MRI Breast: Current Imaging Trends, Clinical Applications, and Future Research Directions. Curr Med Imaging. 2022;18(13):1347-1361. doi: 10.2174/1573405618666220415130131. PMID: 35430976.
  9. Girometti R, Tomkova L, Cereser L, Zuiani C. Breast cancer staging: Combined digital breast tomosynthesis and automated breast ultrasound versus magnetic resonance imaging. Eur J Radiol. 2018 Oct;107:188-195. doi: 10.1016/j.ejrad.2018.09.002. Epub 2018 Sep 5. PMID: 30292265.
  10. Schmachtenberg C, Fischer T, Hamm B, Bick U. Diagnostic Performance of Automated Breast Volume Scanning (ABVS) Compared to Handheld Ultrasonography With Breast MRI as the Gold Standard. Acad Radiol. 2017 Aug;24(8):954-961. doi: 10.1016/j.acra.2017.01.021. Epub 2017 Mar 20. PMID: 28336007.
  11. Vourtsis A, Kachulis A. The performance of 3D ABUS versus HHUS in the visualisation and BI-RADS characterisation of breast lesions in a large cohort of 1,886 women. Eur Radiol. 2018 Feb;28(2):592-601. doi: 10.1007/s00330-017-5011-9. Epub 2017 Aug 21. PMID: 28828640.
  12. Jia M, Lin X, Zhou X, Yan H, Chen Y, Liu P, Bao L, Li A, Basu P, Qiao Y, Sankaranarayanan R. Diagnostic performance of automated breast ultrasound and handheld ultrasound in women with dense breasts. Breast Cancer Res Treat. 2020 Jun;181(3):589-597. doi: 10.1007/s10549-020-05625-2. Epub 2020 Apr 27. PMID: 32338323.
  13. Giger ML, Inciardi MF, Edwards A, Papaioannou J, Drukker K, Jiang Y, Brem R, Brown JB. Automated Breast Ultrasound in Breast Cancer Screening of Women With Dense Breasts: Reader Study of Mammography-Negative and Mammography-Positive Cancers. AJR Am J Roentgenol. 2016 Jun;206(6):1341-50. doi: 10.2214/AJR.15.15367. Epub 2016 Apr 4. PMID: 27043979.
  14. Rahmat K, Ab Mumin N, Ng WL, Mohd Taib NA, Chan WY, Ramli Hamid MT. Automated Breast Ultrasound Provides Comparable Diagnostic Performance in Opportunistic Screening and Diagnostic Assessment. Ultrasound Med Biol. 2024 Jan;50(1):112-118. doi: 10.1016/j.ultrasmedbio.2023.09.011. Epub 2023 Oct 14. PMID: 37839984.
  15. Łuczyńska E, Pawlak M, Popiela T, Rudnicki W. The Role of ABUS in The Diagnosis of Breast Cancer. J Ultrason. 2022 Apr 27;22(89):76-85. doi: 10.15557/JoU.2022.0014. PMID: 35811591; PMCID: PMC9231518.
  16. Mann RM, Balleyguier C, Baltzer PA, Bick U, Colin C, Cornford E, Evans A, Fallenberg E, Forrai G, Fuchsjäger MH, Gilbert FJ, Helbich TH, Heywang-Köbrunner SH, Camps-Herrero J, Kuhl CK, Martincich L, Pediconi F, Panizza P, Pina LJ, Pijnappel RM, Pinker-Domenig K, Skaane P, Sardanelli F; European Society of Breast Imaging (EUSOBI), with language review by Europa Donna–The European Breast Cancer Coalition. Breast MRI: EUSOBI recommendations for women's information. Eur Radiol. 2015 Dec;25(12):3669-78. doi: 10.1007/s00330-015-3807-z. Epub 2015 May 23. PMID: 26002130; PMCID: PMC4636525.
  17. Wang SY, Long JB, Killelea BK, Evans SB, Roberts KB, Silber A, Gross CP. Preoperative Breast Magnetic Resonance Imaging and Contralateral Breast Cancer Occurrence Among Older Women With Breast Cancer. J Clin Oncol. 2016 Feb 1;34(4):321-8. doi: 10.1200/JCO.2015.62.9741. Epub 2015 Nov 30. PMID: 26628465; PMCID: PMC4872032.
  18. Mann RM, Cho N, Moy L. Breast MRI: State of the Art. Radiology. 2019 Sep;292(3):520-536. doi: 10.1148/radiol.2019182947. Epub 2019 Jul 30. PMID: 31361209.
  19. Boca Bene I, Ciurea AI, Ciortea CA, Dudea SM. Pros and Cons for Automated Breast Ultrasound (ABUS): A Narrative Review. J Pers Med. 2021 Jul 23;11(8):703. doi: 10.3390/jpm11080703. PMID: 34442347; PMCID: PMC8400952.
  20. Wang X, Huo L, He Y, Fan Z, Wang T, Xie Y, Li J, Ouyang T. Early prediction of pathological outcomes to neoadjuvant chemotherapy in breast cancer patients using automated breast ultrasound. Chin J Cancer Res. 2016 Oct;28(5):478-485. doi: 10.21147/j.issn.1000-9604.2016.05.02. PMID: 27877006; PMCID: PMC5101221.
  21. D'Angelo A, Rinaldi P, Belli P, D'Amico R, Carlino G, Grippo C, Giuliani M, Orlandi A, Infante A, Manfredi R. Usefulness of automated breast volume scanner (ABVS) for monitoring tumor response to neoadjuvant treatment in breast cancer patients: preliminary results. Eur Rev Med Pharmacol Sci. 2019 Jan;23(1):225-231. doi: 10.26355/eurrev_201901_16768. PMID: 30657564.
  22. Panico C, Ferrara F, Woitek R, D'Angelo A, Di Paola V, Bufi E, Conti M, Palma S, Cicero SL, Cimino G, Belli P, Manfredi R. Staging Breast Cancer with MRI, the T. A Key Role in the Neoadjuvant Setting. Cancers (Basel). 2022 Nov 24;14(23):5786. doi: 10.3390/cancers14235786. PMID: 36497265; PMCID: PMC9739275.
  23. Lagendijk M, Vos EL, Ramlakhan KP, Verhoef C, Koning AHJ, van Lankeren W, Koppert LB. Breast and Tumour Volume Measurements in Breast Cancer Patients Using 3-D Automated Breast Volume Scanner Images. World J Surg. 2018 Jul;42(7):2087-2093. doi: 10.1007/s00268-017-4432-6. PMID: 29299647; PMCID: PMC5990576.
  24. Taydaş O, Durhan G, Akpınar MG, Demirkazık FB. Comparison of MRI and US in Tumor Size Evaluation of Breast Cancer Patients Receiving Neoadjuvant Chemotherapy. Eur J Breast Health. 2019 Apr 1;15(2):119-124. doi: 10.5152/ejbh.2019.4547. PMID: 31001614; PMCID: PMC6456278.
  25. D'Angelo A, Gatta G, Di Grezia G, Mercogliano S, Ferrara F, Trombadori CML, Franco A, Cina A, Belli P, Manfredi R. Supine versus Prone 3D Abus Accuracy in Breast Tumor Size Evaluation. Tomography. 2022 Aug 12;8(4):1997-2009. doi: 10.3390/tomography8040167. PMID: 36006065; PMCID: PMC9413588.
  26. Chen JH, Lee YW, Chan SW, Yeh DC, Chang RF. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging. Ultrasound Med Biol. 2016 May;42(5):1211-20. doi: 10.1016/j.ultrasmedbio.2015.12.015. Epub 2016 Jan 28. PMID: 26831342.
  1. Allajbeu I, Hickman SE, Payne N, Moyle P, Taylor K, Sharma N, et al. Automated breast ultrasound: Technical aspects, impact on breast screening, and future perspectives. Curr Breast Cancer Rep. 2021;13(3):141–50.