Document Type : Original Article(s)

Authors

1 Chemistry department, Biochemistry division, Faculty of Science, Mansoura University, Mansoura, Egypt

2 Biochemistry Department, Biotechnology Research Institute, High Throughput Molecular and Genetic laboratory, Central Laboratories Network and the Centers of Excellence, National Research Centre, Dokki, Giza, Egypt

3 Department of Surgical Oncology, Mansoura Oncology Centre, Faculty of Medicine, Mansoura University, Mansoura, Egypt

4 Biotechnology Research Center, 23 July St., Industrial Zone, New Damietta

10.30476/mejc.2025.104201.2169

Abstract

Background: The limitations of breast cancer (BC) diagnosis and prognosis strategies are well-established. The present study aimed to evaluate transmembrane 6 superfamily member 1 (TM6SF1) DNA methylation as non-invasive biomarker for differentiating BC from non-cancer individuals (with benign breast diseases and healthy controls). Also, this study aimed to evaluate the association between TM6SF1 methylation and clinicopathological BC features.
Method: A total of 200 women were enrolled in this retrospective study. The study participants were divided into three groups of 120 women with primary BC, 40 women with benign breast diseases, and 40 normal healthy controls. Blood sample were withdrawn and DNA was extracted. Then, TM6SF1 DNA methylation level was detected using a quantitative polymerase chain reaction assay. Data were analyzed using GraphPad prism (version 6) and SPSS (version 20) programs. The statistical differences between the three groups were determined using ANOVA and Kruskal-Wallis tests. A P value < 0.05 was considered to be statistically significant.
Results: The study findings revealed that hyper methylation of TM6SF1 level was reported higher in BC patients [82.2 (56.8-87.7)] as compared with benign [28.9 (27.9-64.8)] or healthy [27.8 (13-28.8)] controls at P = 0.0001. TM6SF1 methylation had superior diagnostic efficacy as compared with established BC markers [carcinoembryonic antigen (CEA) and cancer antigen (CA15.3)]. Also, methylation level showed significant difference among clinical stages, histological grading and lymph-node invasion. 
Conclusion: The present study reveals that aberrant TM6SF1 methylation is associated with BC tumorgenesity. It could facilitate early BC detection from benign breast diseases. Hypermethylated TM6SF1 is associated with disease progression suggesting its potential role as diagnostic and prognostic biomarker for BC.

Highlights

Mohamed A. Abdelrazek (googl escholar)

 

Keywords

Main Subjects

Please cite this article as: El-Far M, Foda BM, Swellam M, Abouzid A, Abdelrazek MA. The Validation of Aberrant TM6SF1 Gene Methylation in the Diagnosis of Breast Cancer Patients. Middle East J Cancer. 2026; 17(2): p-p. doi: 10.30476/mejc.2025.104201.2169.

  1.                                                                                  

    1. Xu Y, Gong M, Wang Y, Yang Y, Liu S, Zeng Q. Global trends and forecasts of breast cancer incidence and deaths. Sci Data. 2023;10(1):334. doi: 10.1038/s41597-023-02253-5. PMID: 37244901; PMCID: PMC10224917.
    2. Rivera-Franco MM, Leon-Rodriguez E. Delays in breast cancer detection and treatment in developing countries. Breast Cancer (Auckl). 2018;12:1178223417752677. doi: 10.1177/1178223417752677. Erratum in: Breast Cancer (Auckl). 2019;13:1178223419834790. doi: 10.1177/1178223419834790. PMID: 29434475; PMCID: PMC5802601.
    3. Francies FZ, Hull R, Khanyile R, Dlamini Z. Breast cancer in low-middle income countries: abnormality in splicing and lack of targeted treatment options. Am J Cancer Res. 2020;10(5):1568-1591. PMID: 32509398; PMCID: PMC7269781.
    4. Abdelrazek MA, Nageb A, Barakat LA, Abouzid A, Elbaz R. BC-DETECT: combined detection of serum HE4 and TFF3 improves breast cancer diagnostic efficacy. Breast Cancer. 2022;29(3):507-515. doi: 10.1007/s12282-021-01328-8. PMID: 34994942.
    5. Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int J Mol Sci. 2021;22(9):5047. doi: 10.3390/ijms22095047. PMID: 34068765; PMCID: PMC8126218.
    6. Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B., et al. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther. 2023;8(1):98. doi: 10.1038/s41392-023-01333-7. PMID: 36864020; PMCID: PMC9981733.
    7. de Almeida BP, Apolónio JD, Binnie A, Castelo-Branco P. Roadmap of DNA methylation in breast cancer identifies novel prognostic biomarkers. BMC Cancer. 2019;19(1):219. doi: 10.1186/s12885-019-5403-0. PMID: 30866861; PMCID: PMC6416975.
    8. Swellam M, Saad EA, Sabry S, Denewer A, Abdel Malak C, Abouzid A. Alterations of PTEN and SMAD4 methylation in diagnosis of breast cancer: implications of methyl II PCR assay. J Genet Eng Biotechnol. 2021;19(1):54. doi: 10.1186/s43141-021-00154-x. PMID: 33825073; PMCID: PMC8024427.
    9. Carim-Todd L, Escarceller M, Estivill X, Sumoy L. Cloning of the novel gene TM6SF1 reveals conservation of clusters of paralogous genes between human chromosomes 15q24-->q26 and 19p13.3-->p12. Cytogenet Cell Genet. 2000;90(3-4):255-260. doi: 10.1159/000056784. PMID: 11124529.
    10. de Groot JS, Pan X, Meeldijk J, van der Wall E, van Diest PJ, Moelans CB. Validation of DNA promoter hypermethylation biomarkers in breast cancer--a short report. Cell Oncol (Dordr). 2014;37(4):297-303. doi: 10.1007/s13402-014-0189-1. PMID: 25123395.
    11. Tao R, Li J, Xin J, Wu J, Guo J, Zhang L, et al. Methylation profile of single hepatocytes derived from hepatitis B virus-related hepatocellular carcinoma. PLoS One. 2011;6(5): e19862. doi: 10.1371/journal.pone.0019862. PMID: 21625442; PMCID: PMC3100314.
    12. Cheng Y, Su Y, Wang S, Liu Y, Jin L, Wan Q, et al. Identification of circRNA-lncRNA-miRNA-mRNA Competitive Endogenous RNA Network as Novel Prognostic Markers for Acute Myeloid Leukemia. Genes (Basel). 2020;11(8):868. doi: 10.3390/genes11080868. PMID: 32751923; PMCID: PMC7465400.
    13. Huang S, Zhao H, Lou X, Chen D, Shi C, Ren Z. TM6SF1 suppresses the progression of lung adenocarcinoma and M2 macrophage polarization by inactivating the PI3K/AKT/mtor pathway. Biochem Biophys Res Commun. 2024;718:149983. doi: 10.1016/j.bbrc.2024.149983. PMID: 38718735.
    14. Zhong H, Wang J, Zhu Y, Shen Y. Comprehensive Analysis of a Nine-Gene Signature Related to Tumor Microenvironment in Lung Adenocarcinoma. Front Cell Dev Biol. 2021;9:700607. doi: 10.3389/fcell.2021.700607. PMID: 34540825 PMCID: PMC8440811.
    15. Fackler MJ, Lopez Bujanda Z, Umbricht C, Teo WW, Cho S, Zhang Z, et al. Novel methylated biomarkers and a robust assay to detect circulating tumor DNA in metastatic breast cancer. Cancer Res. 2014;74(8): 2160-2170. doi: 10.1158/0008-5472.Can-13-3392. PMID: 24737128; PMCID: PMC4327879.
    16. O'Sullivan B, Brierley J, Byrd D, Bosman F, Kehoe S, Kossary C, et al. The TNM classification of malignant tumours-towards common understanding and reasonable expectations. Lancet Oncol. 2017;18(7): 849-851. doi: 10.1016/s1470-2045(17)30438-2. PMID: 28677562; PMCID: PMC5851445.
    17. Sahngun Nahm F. Receiver operating characteristic curve: overview and practical use for clinicians. Korean J Anesthesiol. 2022;75(1):25-36. doi: 10.4097/kja.21209. PMID: 35124947; PMCID: PMC8831439.
    18. Kresovich JK, Xu Z, O'Brien KM, Shi M, Weinberg CR, Sandler DP, et al. Blood DNA methylation profiles improve breast cancer prediction. Molecular oncology. 2022;16(1):42-53. doi: 10.1002/1878-0261.13087. PMID: 34411412; PMCID: PMC8732352.
    19. Ricketts CJ, Morris MR, Gentle D, Brown M, Wake N, Woodward ER, et al. Genome-wide CpG island methylation analysis implicates novel genes in the pathogenesis of renal cell carcinoma. Epigenetics. 2012;7(3):278-290. doi: 10.4161/epi.7.3.19103. PMID: 22430804; PMCID: PMC3335951.
    20. Kang JY, Song SH, Yun J, Jeon MS, Cha Y, Lee SH, et al. Identification of long-range epigenetic silencing on chromosome 15q25 and its clinical implication in gastric cancer. Am J Pathol. 2015;185(3):666-678. doi: 10.1016/j.ajpath.2014.11.022. PMID: 25576785.
    21. Klein Kranenbarg RAM, Vali AH, JNM IJ, Pisanic TR, Wang TH, Azad N, et al. High performance methylated DNA markers for detection of colon adenocarcinoma. Clin Epigenetics. 2021;13(1):218. doi: 10.1186/s13148-021-01206-2. PMID: 34903270; PMCID: PMC8670296.
    22. Visvanathan K, Fackler MS, Zhang Z, Lopez-Bujanda ZA, Jeter SC, Sokoll LJ, et al. Monitoring of Serum DNA Methylation as an Early Independent Marker of Response and Survival in Metastatic Breast Cancer: TBCRC 005 Prospective Biomarker Study. J Clin Oncol. 2017;35(7):751-758. doi: 10.1200/jco.2015.66.2080. PMID: 27870562; PMCID: PMC5455421.
    23. Zhang Y, Xie M, Wen J, Liang C, Song Q, Liu W, et al. Hepatic TM6SF2 activates antitumour immunity to suppress metabolic dysfunction-associated steatotic liver disease-related hepatocellular carcinoma and boosts immunotherapy. Gut. 2025;74(4):639-651. doi: 10.1136/gutjnl-2024-333154. PMID: 39667906; PMCID: PMC12014897.
    24. Shan M, Yin H, Li J, Li X, Wang D, Su Y, et al. Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer. Oncotarget. 2016;7(14): 18485-18494. doi: 10.18632/oncotarget.7608. PMID: 26918343; PMCID: PMC4951303.
    25. Downs BM, Mercado-Rodriguez C, Cimino-Mathews A, Chen C, Yuan JP, Van Den Berg E, et al. DNA Methylation Markers for Breast Cancer Detection in the Developing World. Clin Cancer Res. 2019;25(21):6357-6367. doi: 10.1158/1078-0432.Ccr-18-3277. PMID: 31300453; PMCID: PMC6825533.
    26. Fackler MJ, Malone K, Zhang Z, Schilling E, Garrett-Mayer E, Swift-Scanlan T, et al. Quantitative multiplex methylation-specific PCR analysis doubles detection of tumor cells in breast ductal fluid. Clin Cancer Res. 2006;12(11 Pt 1):3306-3310. doi: 10.1158/1078-0432.Ccr-05-2733. PMID:16740751.
    27. Li M, Wang C, Yu B, Zhang X, Shi F, Liu X. Diagnostic value of RASSF1A methylation for breast cancer: a meta-analysis. Biosci Rep. 2019;39(6):BSR20190923. doi: 10.1042/bsr20190923. PMID: 31196964; PMCID: PMC6597854.