Document Type : Original Article(s)
Authors
1 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, 55281 Yogyakarta, Indonesia
2 Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
Abstract
Background: The investigation of genetic modifications and epigenetic controls within the melanoma antigen gene family (MAGE) gene family, the cancer-testis antigen, in breast cancer still remains elusive. The present study aimed to detect genetic and epigenetic alterations in the MAGE family genes among breast cancer patients, specifically those with metastatic breast cancer and experienced resistance to chemotherapy.
Method: In this bioinformatics study, MAGE family genes were retrieved from HUGO genes database and further analyzed for protein-protein interaction using STRING version 12.0, gene ontology using DAVID v2024q2, genetic alterations using cBioportal, ROC plot using ROC plotter, prognostic value using Kaplan-Meier Plotter, DNA methylation using MethSurv, and the correlation between immune cell infiltration using TIMER 2.0. P <0.05 was considered statistically significant.
Results: Patients with metastatic breast cancer have experienced genetic abnormalities in four specific genes of MAGEF1, NSMCE3, MAGEL1, and NDN. The relapse-free survival indicated that NSMCE3 and NDN have an unfavorable prognosis, while MAGEF1 and MAGEL1 have a favorable prognosis in breast cancer patients. A moderate association between the mRNA levels of MAGEF1 and MAGEL1 and the efficacy of chemotherapy was observed. The DNA methylation analysis revealed two significant CpG sites within the MAGEL1 gene in which become a poor prognosis of patients with breast cancer.
Conclusion: This work has the potential to pave the way for the creation of immunotherapy and improved treatment strategy for those struggling with metastatic breast cancer and chemoresistance. Further research is guaranteed to authenticate the outcomes of these bioinformatics discoveries.
Highlights
Adam Hermawan ( google scholar)
I Made Bayu Kresna Yoga ( google scholar)
Keywords
Main Subjects
Please cite this article as: Hermawan A, Bayu Kresna Yoga IM, Irmasari I. An Investigation on the Genetic and Epigenetic Changes of MAGE Family Genes in Breast Cancer Metastasis and Chemoresistance. Middle East J Cancer. 2026; 17(2): p-p. doi:10.30476/mejc.2025.104151.2167.
- Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77-106. doi: 10.1016/j.gendis.2018.05.001. PMID: 30258937; PMCID: PMC6147049.
- Coyle KM, Boudreau JE, Marcato P. Genetic mutations and epigenetic modifications: Driving cancer and informing precision medicine. Biomed Res Int. 2017;2017:9620870. doi: 10.1155/2017/9620870. Epub 2017 Jun 8. PMID: 28685150; PMCID: PMC5480027.
- Li S, Shi X, Li J, Zhou X. Pathogenicity of the MAGE family. Oncol Lett. 2021;22(6):844. doi: 10.3892/ol.2021.13105. PMID: 34733362; PMCID: PMC8561213.
- Thakur C, Qiu Y, Fu Y, Bi Z, Zhang W, Ji H, et al. Epigenetics and environment in breast cancer: New paradigms for anti-cancer therapies. Front Oncol. 2022;12:971288. doi: 10.3389/fonc.2022.971288. PMID: 36185256; PMCID: PMC9520778.
- Schooten E, Di Maggio A, van Bergen En Henegouwen PMP, Kijanka MM. MAGE-A antigens as targets for cancer immunotherapy. Cancer Treat Rev. 2018;67:54-62. doi: 10.1016/j.ctrv.2018.04.009. PMID: 29763778.
- Nin DS, Deng LW. Biology of cancer-testis antigens and their therapeutic implications in cancer. Cells. 2023;12(6):926. doi: 10.3390/cells12060926. PMID: 36980267; PMCID: PMC10047177.
- Sohani M, Rastgar A, Kheyrandish S. Harnessing the power of MAGE proteins in cancer immunotherapy for multiple myeloma. Iran J Blood Cancer. 2024;16(1):1-20.
- Zajac P, Schultz-Thater E, Tornillo L, Sadowski C, Trella E, Mengus C, et al. MAGE-A antigens and cancer immunotherapy. Front Med (Lausanne). 2017;4:18. doi: 10.3389/fmed.2017.00018. PMID: 28337438; PMCID: PMC5340762.
- Shim K, Jo H, Jeoung D. Cancer/testis antigens as targets for rna-based anticancer therapy. Int J Mol Sci. 2023;24(19):14679. doi: 10.3390/ijms241914679. PMID: 37834126; PMCID: PMC10572814.
- Abera B, Dinka H. MAGE genes encoding for embryonic development in cattle is mainly regulated by zinc finger transcription factor family and slightly by CpG Islands. BMC Genom Data. 2022;23(1):19. doi: 10.1186/s12863-022-01034-0. PMID: 35303799; PMCID: PMC8932067.
- Oh C, Kim HR, Oh S, Ko JY, Kim Y, Kang K, et al. Epigenetic upregulation of MAGE-A isoforms promotes breast cancer cell aggressiveness. Cancers (Basel). 2021;13(13):3176. doi: 10.3390/cancers13133176. PMID: 34202157; PMCID: PMC8268034.
- Yanagi T, Nagai K, Shimizu H, Matsuzawa SI. Melanoma antigen A12 regulates cell cycle via tumor suppressor p21 expression. Oncotarget. 2017;8(40):68448-59. doi: 10.18632/oncotarget.19497. PMID: 28978129; PMCID: PMC5620269.
- Jia B, Zhao X, Wang Y, Wang J, Wang Y, Yang Y. Prognostic roles of MAGE family members in breast cancer based on KM-Plotter Data. Oncol Lett. 2019;18(4):3501-16. doi: 10.3892/ol.2019.10722. PMID: 31516568; PMCID: PMC6733005.
- Bruford EA, Braschi B, Denny P, Jones TEM, Seal RL, Tweedie S. Guidelines for human gene nomenclature. Nat Genet. 2020;52(8):754-58. doi: 10.1038/s41588-020-0669-3. PMID: 32747822; PMCID: PMC7494048.
- Ali Z, Hermawan A. Bioinformatics analysis uncovers the importance of RTK-RAS-PI3K/Akt regulation by borneol in overcoming breast cancer resistance to tamoxifen. Indonesian J Pharm. 2022;33(1):135-46. doi:10.22146/ijp.2346.
- Hermawan A, Putri H. Bioinformatics analysis of TIMP1, HK2 and IGFBP7 as potential biomarkers and therapeutic targets of paclitaxel resistance in breast cancer. Middle East J Cancer. 2021;12(2):198-207. doi:10.30476/mejc.2020.83217.1147.
- Hermawan A, Putri H. Use of integrative bioinformatics to identify targets of sinensetin and its mechanisms to overcome colorectal cancer resistance. J Appl Pharm Sci. 2021;11(1):111-20. doi:10.7324/JAPS.2021.110113.
- Hermawan A, Satria D, Hasibuan PAZ, Huda F, Tafrihan AS, Fatimah N, et al. Identification of potential target genes of cardiac glycosides from Vernonia amygdalina Delile in HER2+ breast cancer cells. Article. S Afr J Bot. 2024;164:401-18. doi:10.1016/j.sajb.2023.12.002.
- Hermawan A, Putri H. Characterizing excision repair cross-complementing family genes as drug resistance biomarkers in breast cancer. Beni Suef Univ J Basic Appl Sci. 2023;12(1):79. doi: 10.1186/s43088-023-00415-3.
- Hermawan A, Putri H, Fatimah N, Prasetio HH. Transcriptomics analysis reveals distinct mechanism of breast cancer stem cells regulation in mammospheres from MCF-7 and T47D cells. Heliyon. 2024;10(2):e24356. doi: 10.1016/j.heliyon.2024.e24356. PMID: 38304813; PMCID: PMC10831612.
- Zhou Y, Lih TM, Pan J, Höti N, Dong M, Cao L, et al. Proteomic signatures of 16 major types of human cancer reveal universal and cancer-type-specific proteins for the identification of potential therapeutic targets. J Hematol Oncol. 2020;13(1):170. doi: 10.1186/s13045-020-01013-x. PMID: 33287876; PMCID: PMC7720039.
- Weon JL, Yang SW, Potts PR. Cytosolic iron-sulfur assembly is evolutionarily tuned by a cancer-amplified ubiquitin ligase. Mol Cell. 2018;69(1):113-25.e6. doi: 10.1016/j.molcel.2017.11.010. PMID: 29225034.
- Kozakova L, Vondrova L, Stejskal K, Charalabous P, Kolesar P, Lehmann AR, et al. The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex. Cell Cycle. 2015;14(6):920-30. doi: 10.1080/15384101.2014.1000112. PMID: 25590999; PMCID: PMC4614679.
- Cui J, Chen Y, Ou Y, Liu G, Wen Q, Zhu W, et al. Cancer germline antigen gene MAGEB2 promotes cell invasion and correlates with immune microenvironment and immunotherapeutic efficiency in laryngeal cancer. Clin Immunol. 2022;240:109045. doi: 10.1016/j.clim.2022.109045. PMID: 35618211.
- Tacer KF, Potts PR. Cellular and disease functions of the Prader-Willi Syndrome gene MAGEL2. Biochem J. 2017;474(13):2177-90. doi: 10.1042/BCJ20160616. PMID: 28626083; PMCID: PMC5594744.
- Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, et al. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem. 2020;295(47):16121-55. doi: 10.1074/jbc.REV120.008029. PMID: 32921631; PMCID: PMC7681028.
- Yoshikawa K. Necdin: A purposive integrator of molecular interaction networks for mammalian neuron vitality. Genes Cells. 2021;26(9):641-83. doi: 10.1111/gtc.12884. PMID: 34338396; PMCID: PMC9290590.
- Kuwako K, Taniura H, Yoshikawa K. Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor. J Biol Chem. 2004;279(3):1703-12. doi:10.1074/jbc.M308454200.
- Li J, Bi W, Lu F, Pan B, Xiong M, Nasifu L, et al. Prognostic role of E2F1 gene expression in human cancer: a meta-analysis. BMC Cancer. 2023;23(1):509. doi: 10.1186/s12885-023-10865-8. PMID: 37277745; PMCID: PMC10243032.
- Napolitano L, Barone B, Morra S, Celentano G, La Rocca R, Capece M, et al. Hypogonadism in patients with Prader Willi syndrome: A narrative review. Int J Mol Sci. 2021;22(4):1993. doi: 10.3390/ijms22041993. PMID: 33671467; PMCID: PMC7922674.
- Lafontaine J, Tchakarska G, Rodier F, Mes-Masson AM. Necdin modulates proliferative cell survival of human cells in response to radiation-induced genotoxic stress. BMC Cancer. 2012;12:234. doi: 10.1186/1471-2407-12-234. PMID: 22691188; PMCID: PMC3495902.
- Lee M, Beggs SM, Gildea D, Bupp S, Lichtenberg J, Trivedi NS, et al. Necdin is a breast cancer metastasis suppressor that regulates the transcription of c-Myc. Oncotarget. 2015;6(31):31557-68. doi: 10.18632/oncotarget.5230. PMID: 26384308; PMCID: PMC4741624.
- Yang H, Das P, Yu Y, Mao W, Wang Y, Baggerly K, et al. NDN is an imprinted tumor suppressor gene that is downregulated in ovarian cancers through genetic and epigenetic mechanisms. Oncotarget. 2016;7(3):3018-32. doi: 10.18632/oncotarget.6576. PMID: 26689988; PMCID: PMC4823087.
- van der Crabben SN, Hennus MP, McGregor GA, Ritter DI, Nagamani SC, Wells OS, et al. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. J Clin Invest. 2016;126(8):2881-92. doi: 10.1172/JCI82890. PMID: 27427983; PMCID: PMC4966312.
- Peche LY, Ladelfa MF, Toledo MF, Mano M, Laiseca JE, Schneider C, et al. Human MageB2 protein expression enhances E2F transcriptional activity, cell proliferation, and resistance to ribotoxic stress. J Biol Chem. 2015;290(49):29652-62. doi: 10.1074/jbc.M115.671982. PMID: 26468294; PMCID: PMC4705963.
- Haviland R, Eschrich S, Bloom G, Ma Y, Minton S, Jove R, et al. Necdin, a negative growth regulator, is a novel STAT3 target gene down-regulated in human cancer. PLoS One. 2011;6(10):e24923. doi: 10.1371/journal.pone.0024923. PMID: 22046235; PMCID: PMC3203112.
- Dufva O, Pölönen P, Brück O, Keränen MAI, Klievink J, Mehtonen J, et al. Immunogenomic landscape of hematological malignancies. Cancer Cell. 2020;38(3):380-399.e13. doi: 10.1016/j.ccell.2020.06.002. Erratum in: Cancer Cell. 2020;38(3):424-8. doi: 10.1016/j.ccell.2020.08.019. PMID: 32649887.
- Cui J, Wang L, Zhong W, Chen Z, Chen J, Yang H, et al. Identification and validation of methylation-driven genes prognostic signature for recurrence of laryngeal squamous cell carcinoma by integrated bioinformatics analysis. Cancer Cell Int. 2020;20:472. doi: 10.1186/s12935-020-01567-3. PMID: 33005105; PMCID: PMC7526132.
- Cui J, Wang L, Zhong W, Chen Z, Chen J, Yang H, et al. Development and validation of epigenetic signature predict survival for patients with laryngeal squamous cell carcinoma. DNA Cell Biol. 2021;40(2):247-64. doi: 10.1089/dna.2020.5789. PMID: 33481663.