Document Type : Original Article(s)

Authors

1 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2 Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey

3 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

4 Otolaryngology Head and Neck surgery department, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

10.30476/mejc.2024.102700.2105

Abstract

Background: Laryngeal cancer, the most prevalent head and neck malignancy, represents 2.4% of all tumors and is the 11th most common tumor worldwide. Laryngeal squamous cell carcinoma (LSCC) includes 85-90% of all laryngeal tumors and despite significant progression in screening and diagnostic approaches, occurrence and mortality has not reduced in recent decade. According to recent evidence, microRNA-221(miR-221), miR-93, miR-21, and miR-24 have possible roles in the carcinogenesis process of LSCC. In this study, we aimed to investigate any considerable changes in the micro-RNAs (miR) expression, and whether they have the potential to be a prognostic or diagnostic biomarker for LSCC.
Method: This case-control study examined the expression level of target micro-RNAs in 30 LSCC and their matched marginal healthy samples. The expression level of genes and their relationship with the patient’s clinicopathological characteristics were analyzed using GraphPad Prism v.6.00, with paired t-tests and receiver operating characteristics (ROC) curve tests. A P value less than 0.05 was considered statistically significant.
Results: miR-24 is considerably down regulated in cancer tissues (Fold change = 0.89, P = 0.0213) while miR-21 (fold change: 1.16, P = 0.0063), miR-93 (Fold change: 1.123, P = 0.0448) and miR-221 (Fold change: 1.313, P< 0.0001) were upregulated in LSCC tumor tissue. Among these microRNAs, only mir-221 has related to clinicopathological features and has an acceptable ROC area (0.7860), suggesting its potential as a diagnostic marker.
Conclusion: The results of this study revealed that miR-221 have moderate diagnostic accuracy and could be used as potential biomarkers in LSCC. Additional combination and confirmation with other biomarkers are suggested.

Highlights

Habib Azimi (PubMed)

Shahram Ghasembaglou (Google Scholar)

Keywords

Main Subjects

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination, and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.30476/mejc.2024.102700.2105

  1. Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet. 2008;371(9625):1695-709. doi: 10.1016/S0140-6736(08)60728-X. PMID: 18486742; PMCID: PMC7720415.
  2. Li P, Liu H, Wang Z, He F, Wang H, Shi Z, et al. MicroRNAs in laryngeal cancer: implications for diagnosis, prognosis and therapy. Am J Transl Res. 2016;8(5):1935-44. PMID: 27347304; PMCID: PMC4891409.
  3. Zhang SY, Lu ZM, Luo XN, Chen LS, Ge PJ, Song XH, et al. Retrospective analysis of prognostic factors in 205 patients with laryngeal squamous cell carcinoma who underwent surgical treatment. PLoS One. 2013;8(4):e60157. doi: 10.1371/journal.pone.0060157. PMID: 23593169; PMCID: PMC3617169.
  4. Tomeh C, Holsinger FC. Laryngeal cancer. Curr Opin Otolaryngol Head Neck Surg. 2014;22(2):147-53. doi: 10.1097/MOO.0000000000000032. PMID: 24504224.
  5. Zhang YF, Shen YJ, Huang Q, Wu CP, Zhou L, Ren HL. Predicting survival of advanced laryngeal squamous cell carcinoma: comparison of machine learning models and Cox regression models. Sci Rep. 2023;13(1):18498. doi: 10.1038/s41598-023-45831-8. PMID: 37898687; PMCID: PMC10613248.
  6. Igissin N, Zatonskikh V, Telmanova Z, Tulebaev R, Moore M. Laryngeal cancer: Epidemiology, etiology, and prevention: A narrative review. Iran J Public Health. 2023;52(11):2248-59. doi: 10.18502/ijph.v52i11.14025. PMID: 38106821; PMCID: PMC10719707.
  7. Gamez ME, Blakaj A, Zoller W, Bonomi M, Blakaj DM. Emerging concepts and novel strategies in radiation therapy for laryngeal cancer management. Cancers. 2020; 12(6):1651. doi: 10.3390/cancers12061651. PMID: 32580375; PMCID: PMC7352689.
  8. Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022;72(5):409-36. doi: 10.3322/caac.21731. PMID: 35736631.
  9. Jenckel F, Knecht R. State of the art in the treatment of laryngeal cancer. Anticancer Res. 2013; 33(11):4701-10. PMID: 24222104.
  10. Aftabi Y, Ansarin K, Shanehbandi D, Khalili M, Seyedrezazadeh E, Rahbarnia L, et al. Long non-coding RNAs as potential biomarkers in the prognosis and diagnosis of lung cancer: A review and target analysis. IUBMB Life. 2021;73(2):307-27. doi: 10.1002/iub.2430. PMID: 33369006.
  11. Zarredar H, Ansarin K, Baradaran B, Shekari N, Eyvazi S, Safari F, et al. Critical microRNAs in lung cancer: Recent advances and potential applications. Anticancer Agents Med Chem. 2018;18(14):1991-2005. doi: 10.2174/1871520618666180808125459. PMID: 30088452.
  12. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004. doi: 10.1038/sigtrans.2015.4. PMID: 29263891; PMCID: PMC5661652.
  13. Bao C, Chen J, Chen D, Lu Y, Lou W, Ding B, et al. MiR-93 suppresses tumorigenesis and enhances chemosensitivity of breast cancer via dual targeting E2F1 and CCND1. Cell Death Dis. 2020;11(8):618. doi: 10.1038/s41419-020-02855-6. PMID: 32796817; PMCID: PMC7428045.
  14. Buscaglia LE, Li Y. Apoptosis and the target genes of microRNA-21. Chin J Cancer. 2011;30(6):371-80. doi: 10.5732/cjc.011.10132. PMID: 21627859; PMCID: PMC3319771.
  15. Wang S, Liu N, Tang Q, Sheng H, Long S, Wu W. MicroRNA-24 in cancer: A double side medal with opposite properties. Front Oncol. 2020;10:553714. doi: 10.3389/fonc.2020.553714. PMID: 33123467; PMCID: PMC7566899.
  16. Jones TM, De M, Foran B, Harrington K, Mortimore S. Laryngeal cancer: United Kingdom National Multidisciplinary guidelines. J Laryngol Otol. 2016;130(S2):S75-S82. doi: 10.1017/S0022215116000487. PMID: 27841116; PMCID: PMC4873912.
  17. Wang J, Wu Y, Gao W, Li F, Bo Y, Zhu M, et al. Identification and characterization of CD133+ CD44+ cancer stem cells from human laryngeal squamous cell carcinoma cell lines. J Cancer. 2017;8(3):497. doi: 10.7150/jca.17444. PMID: 28261352; PMCID: PMC5332902.
  18. Liu Y, Liu J, Wang L, Yang X, Liu X. MicroRNA‑195 inhibits cell proliferation, migration and invasion in laryngeal squamous cell carcinoma by targeting ROCK1. Mol Med Rep. 2017;16(5):7154-62. doi: 10.3892/mmr.2017.7460. PMID: 28901478.
  19. Xu L, Chen Z, Xue F, Chen W, Ma R, Cheng S, et al. MicroRNA-24 inhibits growth, induces apoptosis, and reverses radioresistance in laryngeal squamous cell carcinoma by targeting X-linked inhibitor of apoptosis protein. Cancer Cell Int. 2015;15:61. doi: 10.1186/s12935-015-0217-x. PMID: 26106283; PMCID: PMC4477309.
  20. Xie Y, Tobin LA, Camps J, Wangsa D, Yang J, Rao M, et al. MicroRNA-24 regulates XIAP to reduce the apoptosis threshold in cancer cells. Oncogene. 2013;32(19):2442-51. doi: 10.1038/onc.2012.258. PMID: 22733138; PMCID: PMC3460034.
  21. Guo Y, Fu W, Chen H, Shang C, Zhong M. miR-24 functions as a tumor suppressor in Hep2 laryngeal carcinoma cells partly through down-regulation of the S100A8 protein. Oncol Rep. 2012;27(4):1097-103. doi: 10.3892/or.2011.1571. PMID: 22139384; PMCID: PMC3583566.
  22. Sun X, Liu B, Zhao XD, Wang LY, Ji WY. MicroRNA-221 accelerates the proliferation of laryngeal cancer cell line Hep-2 by suppressing Apaf-1. Oncol Rep. 2015;33(3):1221-6. doi: 10.3892/or.2015.3714. PMID: 25586265.
  23. Park JK, Kogure T, Nuovo GJ, Jiang J, He L, Kim JH, et al. miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res. 2011;71(24):7608-16. doi: 10.1158/0008-5472.CAN-11-1144. PMID: 22009537; PMCID: PMC3773601.
  24. Hussein S, Mosaad H, Rashed HE, El-Anwar MW. Up-regulated miR-221 expression as a molecular diagnostic marker in laryngeal squamous cell carcinoma and its correlation with Apaf-1 expression. Cancer Biomark. 2017;19(3):279-87. doi: 10.3233/CBM-160444. PMID: 28453462.
  25. Kan X, Sun Y, Lu J, Li M, Wang Y, Li Q, et al. Co‑inhibition of miRNA‑21 and miRNA‑221 induces apoptosis by enhancing the p53‑mediated expression of pro‑apoptotic miRNAs in laryngeal squamous cell carcinoma. Mol Med Rep. 2016;13(5):4315-20. doi: 10.3892/mmr.2016.5048. PMID: 27035337.
  26. Xie B, Ding Q, Han H, Wu D. miRCancer: a microRNA–cancer association database constructed by text mining on literature. Bioinformatics. 2013;29(5):638-44. doi: 10.1093/bioinformatics/btt014. PMID: 23325619.
  27. Shi C, Wu YY, Wei LQ. MiR-221 affects the proliferation and apoptosis of laryngeal cancer cells through the PI3K/AKT signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(3):1258-63. doi: 10.26355/eurrev_202002_20180. PMID: 32096156.
  28. Wang J, Zhou Y, Lu J, Sun Y, Xiao H, Liu M, et al. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med Oncol. 2014;31(9):148. doi: 10.1007/s12032-014-0148-8. PMID: 25099764.
  29. Liu M, Wu H, Liu T, Li Y, Wang F, Wan H, et al. Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma. Cell Res. 2009;19(7):828-37. doi: 10.1038/cr.2009.72. PMID: 19546886.
  30. Hu A, Huang JJ, Xu WH, Jin XJ, Li JP, Tang YJ, et al. miR-21 and miR-375 microRNAs as candidate diagnostic biomarkers in squamous cell carcinoma of the larynx: association with patient survival. Am J Transl Res. 2014;6(5):604-13. PMID: 25360224; PMCID: PMC4212934.
  31. Wang L, Wang Q, Li HL, Han LY. Expression of MiR200a, miR93, metastasis-related gene RECK and MMP2/MMP9 in human cervical carcinoma--relationship with prognosis. Asian Pac J Cancer Prev. 2013;14(3):2113-8. doi: 10.7314/apjcp.2013.14.3.2113. PMID: 23679328.
  32. Xiao X, Zhou L, Cao P, Gong H, Zhang Y. MicroRNA-93 regulates cyclin G2 expression and plays an oncogenic role in laryngeal squamous cell carcinoma. Int J Oncol. 2015;46(1):161-74. doi: 10.3892/ijo.2014.2704. PMID: 25309979.
  33. Zhou X, Wen W, Zhu J, Huang Z, Zhang L, Zhang H, et al. A six-microRNA signature in plasma was identified as a potential biomarker in diagnosis of esophageal squamous cell carcinoma. Oncotarget. 2017;8(21):34468. doi: 10.18632/oncotarget.16519. PMID: 28380431; PMCID: PMC5470983.
  34. Li N, Miao Y, Shan Y, Liu B, Li Y, Zhao L, et al. MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer. Cell Death Dis. 2017;8(5):e2796. doi: 10.1038/cddis.2017.119. PMID: 28518139; PMCID: PMC5520687.
  35. Vila-Navarro E, Fernandez-Castañer E, Rovira-Rigau M, Raimondi G, Vila-Casadesus M, Lozano JJ, et al. MiR-93 is related to poor prognosis in pancreatic cancer and promotes tumor progression by targeting microtubule dynamics. Oncogenesis. 2020;9(5):43. doi: 10.1038/s41389-020-0227-y. PMID: 32366853; PMCID: PMC7198506.
  36. Chu S, Liu G, Xia P, Chen G, Shi F, Yi T, et al. miR-93 and PTEN: Key regulators of doxorubicin-resistance and EMT in breast cancer. Oncol Rep. 2017;38(4):2401-7. doi: 10.3892/or.2017.5859. PMID: 28765915.