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Abstract 

Background: Pancreatic adenocarcinoma (PAAD) is often diagnosed at a late stage, preventing 

curative surgery. Early detection is crucial for improving patient outcomes. This study aims to 

discover potential biomarkers for identifying asymptomatic PAAD tumors. 

Methods: In this case-control study, two gene expression datasets of PAAD and normal samples 

were collected from GEO and TCGA databases. Independent analyses of these datasets were 

conducted, leading to the identification of genes common to both datasets. Gene ontology and 

pathway enrichment analyses for the feature genes were conducted. Following our strict criteria, 

three feature genes for experimental validation were selected. The reliability of the selected feature 

genes was determined through quantitative real-time polymerase chain reaction (qRT-PCR). Data 

were analyzed using GraphPad Prism 8 software, employing the Mann-Whitney test and unpaired 

t-test.  A P-value of <0.05 was considered statistically significant. 

Results: A total number of 33 genes common to both GEO and TCGA datasets were identified. 

Gene ontology and pathway enrichment methods revealed that the selected genes were primarily 

associated with proteolysis and extracellular matrix organization. Based on our criteria, three 

feature genes (COL10A1, CTHRC1, and TMPRSS4) were selected for experimental validation. 

The results of qRT-PCR on independent patient samples demonstrated that the expression levels 

of COL10A1 and TMPRSS4 were significantly upregulated in PAAD tissues as compared with 
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normal pancreatic tissues. In contrast, CTHRC1 expression levels did not change significantly in 

PAAD in comparison with normal samples. 

Conclusions: Our findings suggest that COL10A1 and TMPRSS4 can be attractive biomarkers for 

the mRNA-based diagnosis of PAAD. 
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Introduction 

Pancreatic cancer (PC), a highly fatal 

malignancy with a poor prognosis, is 

highlighted by the close parallel between 

disease incidence (496,000) and mortality 

(466,000). Based on GLOBOCAN 2020, PC 

is ranked the 12th most common cancer and 

the 7th leading cause of cancer-related death 

worldwide. Despite medical oncology 

advances, PC has the lowest survival rate of 

all major organ cancers. The five-year 

survival rate for patients with PC is almost 

10%.1 Pancreatic tumors can take different 

forms, but they can generally be classified 

into two main categories: exocrine tumors, 

which include pancreatic adenocarcinoma 

(PAAD), also called pancreatic ductal 

adenocarcinoma (PDAC), and 

neuroendocrine tumors.2 

PAAD occurs in the lining of the ducts in the 

pancreas. This malignancy is the most 

prevalent and aggressive form of PC, 

comprising more than 90% of all pancreatic 

tumors.2,3 A diagnosis is typically made in 

the later stages of the disease when a dense, 

desmoplastic stroma has developed and the 

cancer has spread to other organs, making 

potentially curative surgery impossible. In 

the case of these patients, the disease tends to 

progress rapidly, and the majority do not 

survive beyond one year following their 

diagnosis. The prognosis is more promising 

for patients diagnosed earlier and eligible for 

potentially curative surgery.4,5 

The carbohydrate antigen CA 19–9 is widely 

used for diagnosing PC, but its sensitivity and 

specificity range only around 80%. 

Therefore, identifying new disease-specific 

biomarkers to aid in the early detection and 

prognosis evaluation of patients with PC is 

necessary to increase patient survival rates.6 

The lack of reliable biomarker tests for PC 

necessitates the development of novel 

strategies to identify and characterize 

effective biomarkers. In recent years, the use 

of high-throughput sequencing technologies 

to investigate the genetic aspects of various 

diseases, including cancer, has become 

increasingly popular. These techniques 

monitor gene expression levels across the 

genome, and are especially useful for the 

identification of differentially expressed 

genes (DEGs) and fundamental mechanisms 

underlying cancer pathogenesis.7 Machine 

learning techniques are also increasingly 

used to detect gene features from complex 

expression datasets. Several supervised and 

unsupervised learning algorithms have been 

widely applied to identify DEGs, prognostic-

related genes, and therapeutic targets. These 

techniques provide an attractive approach to 

gaining new insights into biological 

processes. Specifically, feature selection 

methodologies are capable of integrating 

transcriptome studies, resulting in the 

identification of significant features and 

potential biomarkers.8 

In this study, we applied feature selection 

algorithms on large-scale gene expression 

data from PAAD to identify potential 

diagnostic biomarkers. Furthermore, the 

reliability of these potential biomarkers was 

validated through quantitative real-time 

polymerase chain reaction (qRT-PCR). 

 

Materials and Methods 

Expression data collection and 

preprocessing 

In this case-control study, two gene 

expression datasets of PAAD and normal 



samples were collected from GEO 

(microarray) and TCGA (RNA-seq). For the 

first dataset, the raw microarray experiments 

data were retrieved from Gene Expression 

Omnibus (GEO, 

www.ncbi.nlm.nih.gov/geo/) database. The 

“PC, PDAC, PAAD”, and their combinations 

were used as keywords to search in the GEO 

database. The datasets were filtered by 

organism (Homo sapiens), and only studies 

that included normal participants and patients 

were selected. Finally, seven microarray data 

sets of PC comprising a total of 388 samples 

were collected. Raw expression data for 

Affymetrix datasets were preprocessed 

through quantile normalization and 

background correction with Robust Multi 

array Average (RMA) algorithm9 in the 

Expression Console software (Affymetrix, 

Santa Clara, CA, USA). Moreover, the 

Agilent dataset was preprocessed based on 

quantile normalization and log2 

transformation in the limma R package.10 

After preprocessing, probe IDs from different 

platforms were matched to their gene symbol.  

The probes that did not match the gene 

symbol were removed. We selected the probe 

with the greatest interquartile range (IQR) for 

the cases where multiple probe IDs were 

matched to the same gene symbol. The batch 

effects among the datasets were removed 

using empirical Bayes algorithm (ComBat) in 

the SVA package.11 

The second dataset, consisting of RNA 

sequencing data, was obtained from The 

Cancer Genome Atlas (TCGA, 

www.portal.gdc.cancer.gov/) database using 

Bioconductor R package TCGAbiolinks.12 

The dataset contained 915 samples, including 

178 PAAD samples and 737 normal samples 

of different tissues. The normalized 

expression data were retrieved based on the 

fragments per kilobase of transcript per 

million mapped reads (UQ-FPKMs) values. 

Genes with zero value in 50% or more of the 

samples were excluded, and the dataset was 

then transferred into the log2 scale. 

Identification of the important genes 

We used several feature selection methods as 

part of machine learning approaches to 

identify the significant feature genes. We 

employed nine distinct attribute weighting 

algorithms, namely support vector machine 

(SVM), chi square, information gain, 

information gain ratio, deviation, Gini index, 

Uncertainty, Relief, and principal component 

analysis (PCA) for the two data sets 

separately. All the algorithms were 

implemented in RapidMiner software.13 

Finally, genes selected by at least one of the 

algorithms were considered feature genes. 

Pathway and functional analyses  

The functional enrichment and pathway 

enrichment analysis feature genes were 

conducted using the g:Profiler tool.14 The 

adjusted P-value threshold of <0.05 was 

deemed significant for biological process, 

molecular function, and cellular component 

terms. The immune-related genes were also 

acquired from the Immunology Database and 

Analysis Portal (ImmPort) InnateDB.15 

Selection of candidate genes 

Three genes were prioritized from the list of 

feature genes for further analysis and qRT-

PCR based on the following criteria: (i) a 

higher expression level in pancreatic tumor 

tissues than in non-cancerous tissues, (ii) 

located on the cell surface or in the 

extracellular region, and (iii) involved in the 

creation of dense desmoplastic stroma. 

Subcellular locations and external 

validation of the expression of selected 

feature genes  

We first used the GeneCards 

(https://www.genecards.org/) and Human 

Protein Atlas (https://www.proteinatlas.org/) 

databases to explore the subcellular location 

of genes. The Gene Expression Profiling 

Interactive Analysis (GEPIA) tool16 was used 

to conduct external validation of gene 

expression patterns in both healthy and 

http://www.portal.gdc.cancer.gov/


malignant tissues. Furthermore, the GEPIA 

platform was employed to examine the 

correlation between expression levels of 

selected genes and pathological stages in 

PAAD tissues. 

FFPE tissue samples preparation 

The formalin-fixed, paraffin-embedded 

(FFPE) tissue sections were collected 

between 2018 and 2020 in Abu Ali Sina 

Hospital, Shiraz, Iran. The Ethics Committee 

of Shiraz University of Medical Sciences 

granted ethical approval for this study 

(Approval ID: IR.SUMS.REC.1400.193). 

Informed consent was obtained from all 

patients or their legal guardian(s). The 

inclusion criteria for the study encompassed 

patients diagnosed with PAAD based on 

clinical and pathological findings who had 

not received any therapeutic interventions, 

such as chemotherapy or radiotherapy, before 

surgery. The exclusion criteria were: 

receiving prior therapies such as 

chemotherapy and radiotherapy prior to 

surgery, bacterial and viral infection, 

diabetes, cardiovascular diseases, 

autoimmune diseases, or other cancers. The 

clinicopathological characteristics of the 

patients are summarized in table 1. In 

accordance with our experimental protocol, 

we excised five sections from each sample, 

each measuring ten μm in thickness. These 

sections were subsequently deposited onto a 

2 ml sterile microcentrifuge tube. A fresh 

sterile microtome blade was employed for 

each paraffin block to prevent any potential 

cross-contamination among the samples. To 

detect the border around the target tumor cell 

areas, tissue sections from each sample were 

stained with hematoxylin and eosin (H&E). 

A proficient pathologist evaluated tumor 

cells under a microscope. 

RNA extraction and cDNA synthesis 

The RNeasy FFPE kit (Qiagen) was used to 

extract total RNA from FFPE tissue sections 

following the manufacturer's instructions. 

DNase I treatment was performed to 

eliminate potential genomic DNA 

contamination of the samples. The RevertAid 

First Strand cDNA Synthesis Kit (Thermo 

Scientific) was used along with oligo-dT and 

random hexamers as primers to perform 

cDNA synthesis. 

qRT-PCR  

The TB Green Premix Ex Taq II (TAKARA) 

and specific primers were used to run qRT-

PCR on an ABI StepOne system (Applied 

Biosystems). The β-actin gene was used as an 

internal control gene for data normalization. 

AlleleID software (version 7.5) was used to 

design primer sets. Before the experiment, all 

primer sequences were blasted using the 

primer-blast tool available on the NCBI 

website (http://www. nchi.nlm.nih.gov). 

Table 2 presents the primer sequences. 

Amplification was carried out in 48-well 

microtitre plates under the following 

conditions: initial denaturation at 95°C for 30 

seconds, followed by 40 cycles of 

denaturation at 95°C for 5 seconds and 

annealing at the specific primer annealing 

temperature for 30 seconds. All 

amplifications have been performed twice to 

ensure repeatability. Amplification 

efficiencies were calculated using reference 

curves with serial dilutions of PCR product, 

which were subsequently used for data 

normalization. Melt curve analysis was used 

to verify the specificity of the qRT-PCR. 

Data normalization was performed using the 

CtNorm algorithm available at 

http://www.ctnorm.sums.ac.ir.17 

Statistical analysis 

The results of the study were reported as the 

mean ± standard deviation (SD). Data 

distribution was assessed using the 

D'Agostino-Pearson test. The Mann-Whitney 

test was used to compare COL10A1 and 

TMPRSS4 expression levels, while the 

unpaired t-test was used to compare CTHRC1 

gene expression levels. Statistical analysis 

was conducted using GraphPad Prism 

version 8.0, which GraphPad Software 



developed. A P-value less than 0.05 was 

considered statistically significant. 

 

Results 

Identification of feature genes in PAAD 

We implemented feature selection methods 

on two datasets to determine and prioritize 

the feature genes specific to PAAD. The first 

data set includes seven independent studies 

that were retrieved from the GEO database 

(Table 3). After data pre-processing and the 

batch effect correction, we obtained an 

expression dataset, including 388 samples 

that divided to tumor and normal groups. The 

results showed that 230 genes were selected 

by at least one of the algorithms to 

discriminate cancer from normal samples 

(Table 4). In order to distinguish target genes 

with greater specificity to cancerous tissues, 

we procured a secondary data set from the 

TCGA database. This data set consisted of 

178 samples of PAAD and 737 normal 

samples obtained from different tissues. Our 

analytical focus in this data set centered on 

genes that exhibited elevated levels of 

expression in cancerous tissue compared with 

normal tissues. These genes could potentially 

be used as diagnostic or therapeutic targets 

for PAAD patients. Overall, 250 genes were 

screened by at least one of the algorithms to 

classify tumor and normal groups (Table 5). 

The Venn diagram indicated that 33 genes 

overlapped between these independent 

analyses (Figure 1 and Table 6). 

Functional and pathway analyses  

The Gene ontology (GO) enrichment analysis 

for common genes indicated that biological 

terms, including proteolysis and extracellular 

matrix organization, were highly enriched. 

Moreover, the result of molecular function 

terms revealed that many genes were 

annotated with serine-type endopeptidase 

activity and peptidase activity. The pathway 

analysis of the common genes also revealed 

that Protein digestion and absorption and 

Pancreatic secretion pathways were 

significantly enriched (Figure 2 and Table 7). 

Among the common genes, two genes, 

including OLFM4 and GP2 were overlapped 

with a list of immune-related genes derived 

from InnateDB. Then, we investigated the 

common genes identified via feature 

selection techniques, with emphasis on the 

evaluation criteria of subcellular location and 

high expression levels in pancreatic tumor 

tissues. Three genes, COL10A1, CTHRC1, 

and TMPRSS4, were prioritized from the list 

of feature genes for further analysis. 

Subcellular locations 

We explored the subcellular location of 

selected genes using the GeneCards and 

Human Protein Atlas databases. The findings 

indicated that COL10A1 and CTHRC1 

proteins were predominantly found in the 

extracellular space, whereas TMPRSS4 was 

mainly expressed in the extracellular space 

and plasma membrane. 

The mRNA expression level of selected 

feature genes in PAAD 

To compare the mRNA expression of 

selected genes between PAAD and normal 

samples, we used the GEPIA dataset. The 

results demonstrated that the expression 

levels of COL10A1, CTHRC1, and TMPRSS4 

were higher in tumors than in normal samples 

(Figure 3). Further analysis also indicated 

significant correlations between COL10A1, 

CTHRC1, and TMPRSS4 expression levels 

and the pathological stages of PAAD (Figure 

4). 

Validation of expression of selected genes in 

a separate patient cohort 

We conducted qRT-PCR using independent 

patient samples to confirm the findings 

mentioned earlier. We collected 23 PAAD 

samples and 19 adjacent normal tissue 

samples to validate the expression of the 

selected genes in patients with PAAD. The 

results of our qRT-PCR analysis 

demonstrated that COL10A1 and TMPRSS4 

mRNA exhibited significantly higher 

expression levels in PAAD tissues compared 



with normal pancreatic tissues (P = 0.0002 

and P = 0.0019, respectively). Despite the 

upregulated expression in PAAD samples, no 

statistically significant difference was 

observed in the expression of CTHRC1 when 

compared with that in normal samples (fold 

change = 1.27) (Figure 5). Furthermore, in 

the receiver operating characteristic (ROC) 

analysis, COL10A1 and TMPRSS4 had an 

area under the ROC Curve (AUC) values of 

94.44% and 86.31%, respectively. This 

suggests a relatively better overall diagnostic 

accuracy for them compared with CTHRC1, 

with an AUC of 64.81%. 

 

Discussion 

We used feature selection algorithms 

combined with experimental validation to 

suggest potential diagnostic biomarkers for 

PAAD. By implementing feature selection 

techniques, we identified 33 genes. The 

further analysis prioritized COL10A1, 

CTHRC1, and TMPRSS4 as potential 

diagnostic biomarkers. Our qRT-PCR results 

showed that in PAAD samples, the 

expression levels of COL10A1 and TMPRSS4 

were higher than in normal pancreatic tissues. 

In contrast, there was no significant change 

in CTHRC1 expression levels compared with 

normal samples. Our results suggest that 

COL10A1 and TMPRSS4 could open up 

opportunities for diagnosing PC in an earlier 

stage. 

Improving the diagnostic accuracy and 

clinical outcomes of patients with PC is 

pivotal. This is because a delay in diagnosis, 

systemic spreading at the time of diagnosis, 

and inadequate effective treatment can 

negatively impact the patient's prognosis. 

Therefore, developing diagnostic and 

prognostic biomarkers and therapeutic 

targets is necessary. To this end, we applied 

nine feature selection models on gene 

expression datasets of PAAD and normal 

samples, and 33 feature genes were identified 

overall. Several studies have used gene 

expression microarray technology to identify 

tumor-associated genes. However, the results 

were inconsistent, possibly caused by 

dissimilarity in dataset selection and 

statistical procedures applied.18 Because 

microarray gene expression data are highly 

dimensional, feature selection techniques, 

which form a subset of machine learning, can 

offer valuable assistance in differentiating 

genes possessing specific biological 

capabilities. Our GO and pathway 

investigation demonstrated that the feature 

genes were predominantly enriched with 

proteolysis and extracellular matrix 

organization. The result of molecular 

function terms revealed that many genes 

were annotated with serine-type 

endopeptidase and peptidase activity. The 

pathway analysis of the common genes 

revealed that protein digestion and absorption 

and pancreatic secretion pathways were 

significantly enriched. These pathways 

predominantly influence biological processes 

of energy metabolism and substance 

absorption. It is necessary to mention that 

most PCs originate from exocrine cells, 

which produce digestive juices, and 

abnormal metabolism is a key hallmark of 

PCs. We investigated the common genes 

identified via feature selection techniques, 

with a focus on the evaluation criteria of 

subcellular location, function, and high 

expression levels in pancreatic tumor tissues. 

Of the list of feature genes, COL10A1, 

CTHRC1, and TMPRSS4 were the three 

genes selected for further analysis. In the next 

step, increased expression of three selected 

feature genes in PAAD tissues was 

confirmed by the GEPIA online tool. 

Furthermore, the correlation between 

selected genes and pathological stages in 

PAAD patients demonstrated that the 

expression of COL10A1, CTHRC1, and 

TMPRSS4 are negatively associated with 

disease progression, supporting their 

prognostic significance. Using the qRT-PCR 



method, we also verified our bioinformatics 

findings in an independent patient cohort. 

Our results showed that in comparison with 

normal pancreatic tissues, COL10A1, 

TMPRSS4, and CTHRC1 were highly 

expressed in PAAD samples. CTHRC1 

expression did not increase statistically 

significantly, which may be due to the limited 

sample size.  

Collagen, a key element of the tumor 

microenvironment, serves as a scaffold for 

cell growth and induces epithelial cell 

proliferation, differentiation, and migration. 

A collagen-rich fibrotic extracellular matrix 

is an important hallmark of PAAD. Increased 

fibrosis due to collagen deposition can 

promote tumor development and invasion.19 

As a member of the collagen family, type X 

collagen alpha 1 chain (COL10A1) has been 

reported to be a tumor-associated gene. The 

expression of this gene is negligible in most 

normal adult tissues and is elevated in various 

solid tumor tissues. As a result of integrated 

bioinformatics analysis, Li et al. identified 

COL10A1 as a potential prognostic marker in 

esophageal squamous cell carcinoma.20 In 

colorectal cancer, Huang et al. found that 

overexpression of COL10A1 protein levels 

inhibits proliferation, suppresses EMT, and 

reduces the migration and invasion ability of 

colorectal cancer cells. Additionally, they 

reported that COL10A1 overexpression could 

independently predict prognosis and overall 

survival (OS) in colorectal cancer patients.21 

Liang et al. provided clues for the 

contribution of COL10A1 in the proliferation 

and metastasis of lung adenocarcinoma 

(LUAD) cells through the 

COL10A1/DDR2/FAK axis. The study also 

revealed that patients diagnosed with LUAD 

who had elevated COL10A1 expression 

exhibited unfavorable OS and RFS 

outcomes.22 Furthermore, a study conducted 

by Andriani et al. confirmed that the levels of 

the circulating protein COL10A1 are much 

higher in the plasma of individuals with lung 

cancer compared with lung cancer cells. This 

suggests that COL10A1 could be a promising 

candidate for diagnosing the disease.23 

Epigenetic modifications are inheritable and 

reversible mechanisms that alter gene 

expression and chromatin structure without 

modifying the DNA sequence. They are 

generally recognized to impact all aspects of 

tumor progression.24 A recent study has 

shown that the presence of m6A (N6-

methyladenosine) modification, facilitated 

by enhanced METTL3 (methyltransferase 

like 3) in CAFs (cancer-associated 

fibroblasts), leads to an increase in the 

expression of COL10A1. This, in turn, 

promotes cell proliferation and inhibits 

apoptosis, ultimately speeding tumor growth 

in a lung cancer model, both in vitro and in 

vivo.25 In line with our findings, Wen et al. 

observed significant upregulation of the 

COL10A1 gene in both PC cells and tissues. 

This increased expression of COL10A1 was 

associated with an unfavorable prognosis. 

Moreover, the researchers uncovered that the 

COL10A1-DDR2 axis prompts the activation 

of the MEK/ERK signaling pathway which, 

in turn, induces epithelial-mesenchymal 

transition (EMT) and facilitates the progress 

of PC.19 Also, using bioinformatics analysis, 

Xu et al. recognized COL10A1 as a gene 

involved in PAAD tumorigenesis. They 

discovered that the expression of COL10A1 

was abnormally elevated in PAAD and 

linked with poor prognosis. Additionally, it 

was revealed that COL10A1 knockdown 

reduced PC cell proliferation, migration, and 

invasion in vitro. They identified CD276 as a 

downstream target of COL10A1 and 

demonstrated that COL10A1 promotes 

tumorigenesis in PAAD by regulating 

CD276.26 CD276, also known as B7-H3, is 

an inhibitory member of the B7 family that is 

highly expressed in tumors and participates 

in tumor cell immunosuppression by 

inhibiting NK cell and T-cell activity.27 



Collagen triple helix repeat containing-1 

(CTHRC1) plays a pivotal role in several 

physiological and pathological processes. 

Several studies have suggested that 

overexpression of CTHRC1 promotes tumor 

growth, invasion, and metastasis through 

various signaling pathways.28,29 Our findings 

are in line with prior studies demonstrating 

that high levels of CTHRC1 are associated 

with the progression and metastasis of PC. 

Liu et al. discovered that CTHRC1 

expression was markedly elevated in PDAC 

tissues compared with normal tissues, as 

observed at both the mRNA and protein 

levels. According to their findings, increased 

CTHRC1 expression is a negative indicator 

of prognosis in PDAC. Patients with higher 

CTHRC1 expression had significantly shorter 

OS. Elevated levels of CTHRC1 protein 

expression were strongly linked to the 

occurrence of invasion and metastasis.30 

Furthermore, CTHRC1 can regulate immune 

cells to mediate PC development and 

progression. Lee et al. found that CTHRC1 

regulates the expression of angiopoietin-2 

(Ang-2), a ligand for the Tie2 receptor. 

Moreover, they have demonstrated that 

CTHRC1 facilitates the process of 

angiogenesis in pancreatic tumors by 

recruiting monocytes that express Tie2 to the 

tumor microenvironment.31 

The involvement of proteases in almost all 

biological processes highlights their 

immense importance in both healthy and 

pathological conditions. Notably, 

dysregulation of proteases is a pivotal event 

in cancer development. There has been 

evidence that proteases play an important 

role in various stages of cancer. Their impact 

is twofold, directly exerting influence 

through their proteolytic activity, as well as 

indirectly by regulating cellular functions and 

signaling. Transmembrane serine protease 4 

(TMPRSS4), a protease belonging to the Type 

II transmembrane serine protease (TTSP) 

family, is expressed at high levels in various 

cancer types and directly correlates with poor 

outcomes.32 In lung cancer, TMPRSS4 has 

been shown to promote tumor growth and 

affect chemotherapy treatment by imparting 

drug resistance.33 In gastric cancer, 

TMPRSS4 enhanced the invasion of 

malignant cells by activating the NF-

kB/MMP-9 signaling pathway.34 Wang et al. 

showed a significant association between 

TMPRSS4 expression and hepatocellular 

carcinoma (HCC) progression. They found 

that TMPRSS4 acts as a positive regulator of 

the Raf/MEK/ERK1/2 pathway, leading to 

EMT and promoting invasion, migration, and 

metastasis of HCC. Additionally, they 

demonstrated that TMPRSS4 induces 

angiogenesis by suppressing the expression 

of RECK.35 The results of Bhasin et al. agree 

with our findings that TMPRSS4 is an 

oncogenic protein overexpressed in PAAD 

tissues. Using a meta-analysis approach 

based on PAAD datasets, they identified and 

validated a five-gene classifier signature. 

This signature, which included TMPRSS4, 

AHNAK2, POSTN, ECT2, and SERPINB5, 

exhibited 95% sensitivity and 89% 

specificity in distinguishing PAAD from 

non-tumor samples.36 Studies conducted by 

Gu et al. in PAAD have shown that 

TMPRSS4 is significantly overexpressed in 

tumoral tissues compared with non-tumor 

tissues, which has been linked to poor 

prognosis. They revealed that TMPRSS4 has 

a proto-oncogene function in PC by 

promoting proliferation, inhibiting apoptosis, 

and increasing cell invasion. TMPRSS4 

accomplishes its oncogenic functions by 

stimulating the ERK1/2 signaling pathway in 

PC cells.37 

Overall, our results suggest that COL10A1 

and TMPRSS4 could open up opportunities 

for diagnosing PC in an earlier stage. 

However, further validation testing is needed 

to move these biomarkers from research to 

clinical application. To do so, repeating this 

study with larger-scale studies with diverse 



patient populations, comprehensive 

evaluation of these markers' sensitivity and 

specificity in distinguishing PAAD from 

normal pancreatic tissue and other pancreatic 

conditions, and finding a proper cut-off point 

for distinguishing between normal and 

pathological levels of these markers is 

essential. 

One notable limitation of this study was the 

small sample size, which can affect the 

reliability and generalizability of the results 

and make it difficult to detect significant 

differences. Further studies with larger 

sample sizes are required to validate our 

findings. Another issue was the limitations in 

accessing comprehensive patient data. 

Metastasis is an important factor in PC 

staging. In this study, we had access only to 

the patient's pathology reports, and we did 

not have access to patient history and other 

necessary reports, such as treatments, whole-

body scans, or PET scan reports, which are 

essential for determining metastasis status. 

Due to these limitations, a definite stage 

evaluation was impossible. Therefore, we 

could not demonstrate a correlation between 

disease stage and gene expression levels in 

our independent patient cohort. Collaborating 

with clinical partners for more detailed 

patient records may help overcome this 

obstacle in future research. Another 

limitation of this study was the lack of in vitro 

examination of the molecular mechanisms 

and associated pathways in which selected 

genes were involved. Understanding the 

molecular mechanisms and associated 

pathways could provide deeper insights into 

the diagnostic, prognostic, and therapeutic 

potential of these genes in PAAD. Our future 

research will involve conducting experiments 

to confirm these findings using other 

laboratory approaches. 

 

Conclusion 

In this study, we applied feature selection 

algorithms on large-scale gene expression 

data of PAAD to identify potential diagnostic 

biomarkers. Furthermore, the reliability of 

these potential biomarkers was validated 

through the use of qRT-PCR. Overall, the 

findings suggest that COL10A1 and 

TMPRSS4 could open up opportunities for 

diagnosing PC in an earlier stage. 
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Figure 1. This figure shows the Venn diagram of 33 genes overlapped between two independent 

analyses. 
TCGA: The cancer genome atlas 



 

Figure 2. This figure shows the GO enrichment analysis for common genes. 
GO: Gene ontology; BP: biological process; CC: cellular component; MF: molecular function 



 

 

Figure 3. Validation of selected genes expression using RNA-Seq data in PAAD tissues: The 

GEPIA website was the source of the downloaded boxplots. The blue boxes denote the expression 

levels in normal tissues, the red boxes denote the expression levels in pancreatic adenocarcinoma 

tissues, and the asterisk means statistically significant. Statistical significance was defined as P < 

0.05. 
GEPIA: Gene expression profiling interactive analysis; PAAD: Pancreatic adenocarcinoma; num(T): sample size of tumor data; 

num(N): sample size of normal data 

 



 

Figure 4. Correlation among the mRNA expression levels of selected genes and the pathologic 

stages of PAAD: Violin plots were generated based on TCGA data in GEPIA. F-value represents 

the statistical value of the F test; Pr (> F) represents the P-value. Statistical significance was 

defined as P < 0.05. (A) COL10A1; (B) CTHRC1; (C) TMPRSS4.  
PAAD: Pancreatic adenocarcinoma; TCGA: The cancer genome atlas; GEPIA: Gene expression profiling interactive analysis 



 

Figure 5. qRT-PCR compared mRNA expression levels of selected genes in tumor and adjacent 

normal tissues: Selected gene expression levels in PAAD tissues (n = 23) and matched normal 

pancreatic tissues (n = 19) were assessed in our independent patient sample using qRT-PCR. For 

COL10A1 and TMPRSS4, Mann-Whitney was performed. For CTHRC1, an unpaired t-test was 

performed, and the value was shown as the mean ± SD of two separate experiments. The red boxes 

reflect the levels of expression in pancreatic adenocarcinoma tissues, whereas the blue boxes show 

the levels of expression in normal tissues. Statistical significance was defined as P < 0.05. (A) 

COL10A1; (B) TMPRSS4; (C) CTHRC1. 
PAAD: Pancreatic adenocarcinoma; qRT-PCR: Quantitative real-time polymerase chain reaction; n: number 

 

 

 

 

 

 



Table 1. Clinicopathological characteristics of PAAD patients 

CPC Factors Number (%) 

Gender Male 

Female 

15 (65.2) 

8 (34.8) 

Age (Year) ≤55 

>55 

9 (39.1) 

14 (60.9) 

Histologic grade Well-differentiated (grade 1) 

Moderately-differentiated (grade 2) 

Poorly-differentiated (grade 3) 

Undifferentiated (grade 4) 

6 (26.1) 

15 (65.2) 

2 (8.7) 

- 

Lymph node status Positive 

Negative 

17 (73.9) 

6 (26.1) 

Tumor size ≤3 

>3 

16 (69.5) 

7 (30.5) 
CPC: Clinicopathological characteristics; PAAD: Pancreatic adenocarcinoma 

 



Table 2. Primers sequences 

Target Sequence Annealing 

temperature 

PCR 

product 

lengths 

β-actin F: 5' GCCTTTGCCGATCCGC 3' 

R: 5' GCCGTAGCCGTTGTCG 3' 

59 ˚C 182 bp 

COL10A1 F: 5' ACGCTGAACGATACCAAATGC 3' 

R: 5' TGCTCTCCTCTTACTGCTATACCT 

3' 

56 ˚C 115 bp 

CTHRC1 F: 5' GGGAATGTCTGAGGGAAAG 3' 

R: 5' AATGTGAAATACCAACGCTGA 3' 

56 ˚C 211 bp 

TMPRSS4 F: 5' CTGGTTCTCTGCCTGTTTCG 3' 

R: 5' AAGTGGGTTTGCTGCTGTAG 3' 

56 ˚C 86 bp 

PCR: Polymerase chain reaction 



Table 3. Description of GEO datasets used in the analysis  

Accession Platform full name Platform 

abbreviation 

Samples 

(tumor/normal) 

GSE15471 [HG-U133_Plus_2] 

Affymetrix Human Genome 

U133 Plus 2.0 Array 

GPL570 78 (36/42) 

GSE28735 [HuGene-1_0-st] 

Affymetrix Human Gene 1.0 

ST Array 

GPL6244 90 (45/45) 

GSE62452 [HuGene-1_0-st] 

Affymetrix Human Gene 1.0 

ST Array 

GPL6244 130 (69/61) 

GSE55643 Agilent-014850 Whole 

Human Genome Microarray 

4x44K G4112F 

GPL6480 53 (45/8) 

GSE22780 [HG-U133_Plus_2] 

Affymetrix Human Genome 

U133 Plus 2.0 Array 

GPL570 10 (5/5)a 

GSE71989 [HG-U133_Plus_2] 

Affymetrix Human Genome 

U133 Plus 2.0 Array 

GPL570 21 (13/8)b 

GSE46234 [HG-U133_Plus_2] 

Affymetrix Human Genome 

U133 Plus 2.0 Array 

GPL570 6 (2/4)c 

a: The GSM563307, GSM563308, GSM563315, GSM563316, GSM563317, and GSM563318 samples were removed from 

GSE22780 dataset; b: The GSM1849348 sample was removed from GSE71989 dataset because the patient is a sample of 

pancreatitis; c: The GSM1126853 and GSM1126854 samples were removed from GSE46234 dataset; GEO: Gene Expression 
Omnibus 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1126853


Table 4. The most important feature genes selected by different attribute weighting algorithms 

for microarray dataset 

Attribute * Number of attribute weighting algorithms ** 

S100P 7 

KCNN4 6 

NHS 6 

MLPH 6 

CTSE 6 

TRIM29 6 

SLC6A14 6 

SDR16C5 6 

PLEK2 5 

RHBDL2 5 

MYOF 5 

GALNT5 5 

ECT2 5 

CTHRC1 5 

LY6E 5 

CAPG 5 

ASAP2 5 

KRT19 5 

TSPAN1 5 

MST1R 5 

MBOAT2 5 

S100A6 5 

STYK1 5 

GJB2 5 

S100A11 5 

TMPRSS4 5 

TRIP10 5 

DNTTIP1 5 

SULF1 5 

CDH3 5 

COL10A1 5 

SLPI 5 

IFI27 5 

LAMB3 5 

LAMC2 5 

SFN 5 

AMIGO2 5 

NQO1 5 

PYGB 5 

PKM 4 

CSTB 4 



COL5A1 4 

ANO1 4 

MET 4 

NTM 4 

ZDHHC7 4 

SLC16A3 4 

COL11A1 4 

SDC1 4 

MARVELD1 4 

ITGA2 4 

GPRC5A 4 

CEACAM6 4 

PCDH7 3 

S100A16 3 

HK1 3 

HK2 3 

NOX4 3 

DKK1 3 

ITGA3 3 

LPCAT4 3 

XAF1 3 

FERMT1 3 

FBXO32 3 

OSBPL3 2 

APOL1 2 

MYO1E 2 

CLIC1 2 

DLG5 2 

ACSL5 2 

PLPP4 2 

FN1 2 

CD109 2 

FGD6 2 

ENO2 2 

PLAU 2 

ACTN1 2 

LRRC8A 2 

IGFBP3 2 

PTTG1IP 2 

RRAS 2 

KRT17 2 

ANTXR1 2 

RSAD2 2 



VILL 2 

ZNF185 2 

MTMR11 2 

COL17A1 2 

PI3 2 

PRSS1 1 

ERP27 1 

CTRB2 1 

CLPS 1 

AQP8 1 

RPS4Y1 1 

GP2 1 

CTRC 1 

PLA2G1B 1 

PNLIP 1 

CPB1 1 

OLFM4 1 

CPA1 1 

SERPINI2 1 

GEM 1 

FAM3B 1 

CELA3B 1 

GCG 1 

REG1B 1 

ANO5 1 

UBE2T 1 

CPA2 1 

CELA2B 1 

PNLIPRP2 1 

REG3A 1 

PNLIPRP1 1 

REG1A 1 

ADAM9 1 

NT5C2 1 

CXCR4 1 

SYCN 1 

PLAUR 1 

RAI14 1 

TRIP4 1 

ALB 1 

SPARC 1 

PPY 1 

EPHX2 1 



C1S 1 

SULF2 1 

IL1RAP 1 

FHL2 1 

RIC3 1 

COL1A2 1 

COL5A2 1 

CORO2A 1 

MMP11 1 

CFH 1 

PPP1R18 1 

CST1 1 

THBS2 1 

RAB31 1 

MX2 1 

CTSK 1 

FAP 1 

EXOC1 1 

TIMP1 1 

FXYD5 1 

COL8A1 1 

SPOCK1 1 

S100A10 1 

CCL20 1 

IAPP 1 

ANKRD10 1 

VCAN 1 

IGFBP7 1 

CD55 1 

LEMD1 1 

SLC44A1 1 

PIAS3 1 

NMU 1 

NLRP14 1 

ANGPTL7 1 

KLK7 1 

ABCA12 1 

ZNF425 1 

FSD1L 1 

WFDC1 1 

SKI 1 

COL6A6 1 

ZNF583 1 



DUOXA1 1 

SCN5A 1 

AGR2 1 

CST11 1 

CACNB4 1 

C8orf48 1 

PEX14 1 

MRO 1 

VSIG1 1 

GLT8D1 1 

OR3A3 1 

CDH22 1 

ZNF93 1 

LMNTD1 1 

NPTX1 1 

ZFP28 1 

MOSPD3 1 

MUC1 1 

STAC 1 

ZNF251 1 

PITHD1 1 

CCR8 1 

TNMD 1 

FZD2 1 

NDNF 1 

KCNMB4 1 

SLC9A2 1 

KBTBD12 1 

HHIP 1 

ADH7 1 

SLC26A9 1 

DRP2 1 

IL31RA 1 

PITX1 1 

MMP28 1 

GLUD2 1 

KLK10 1 

PPP1R14A 1 

ATF3 1 

WRAP53 1 

SERPINB5 1 

FCN3 1 

KCNH1 1 



DOK3 1 

TBX15 1 

KCTD4 1 

PLXNB3 1 

C6orf118 1 

SSMEM1 1 

ZNF257 1 

HBD 1 

BEST3 1 

MUC17 1 

GJB3 1 

BATF 1 

LRFN5 1 

AFAP1L2 1 

CAPNS2 1 

POU1F1 1 

CLDN18 1 
* The official symbol for each human gene; **The number of algorithms that selected the attribute 

 

 



Table 5. The most important feature genes selected by different attribute weighting algorithms 

for TCGA dataset 

Attribute * Number of attribute weighting algorithms ** 

INS 7 

PNLIP 7 

CTRB1 6 

CTRB2 6 

PRSS1 6 

GAD2 6 

PDX1 6 

COL11A1 6 

COL10A1 6 

CGB5 5 

COMP 5 

G6PC2 5 

PPY 5 

ADAM8 4 

FOXL1 4 

CST2 4 

CTHRC1 4 

STX1A 4 

CGB 4 

MMP11 4 

CTRC 4 

C19orf30 4 

TRY6 4 

CST1 4 

HTR1D 4 

ONECUT3 3 

CARD11 3 

ADAMTS14 3 

MMP14 3 

ASPHD1 3 

TIMP1 3 

CELA3A 3 

CGB8 3 

CALHM3 3 

ST8SIA3 3 

TM4SF4 3 

HSDL2 2 

ENC1 2 

C14orf105 2 

GCG 2 

FRMD5 2 



C20orf103 2 

CELSR3 2 

ERN2 2 

REG1A 2 

EPS8L3 2 

TCN1 2 

ANXA10 2 

DCBLD1 2 

IGFL2 2 

TFF2 2 

IAPP 2 

SYCN 2 

PRSS3 2 

CELA2A 2 

CHST4 2 

FGF19 2 

ONECUT2 2 

KNG1 1 

SLC34A2 1 

AGXT 1 

HRG 1 

KRT15 1 

RHCG 1 

FABP1 1 

HP 1 

CPB2 1 

UMOD 1 

XIST 1 

KDM5D 1 

PLG 1 

FGG 1 

HPD 1 

CXCL17 1 

ACSM2A 1 

SLC26A3 1 

EIF1AY 1 

TF 1 

C4BPA 1 

AHSG 1 

DDX3Y 1 

SFTPA2 1 

KRT4 1 

TG 1 



C20orf114 1 

TAT 1 

USP9Y 1 

HMGCS2 1 

PRODH2 1 

KRT13 1 

UGT3A1 1 

UTY 1 

DPYS 1 

APOA2 1 

GSTA2 1 

CYP4A11 1 

AQP2 1 

APOC3 1 

DSG3 1 

SLC6A19 1 

AGXT2 1 

SLC12A1 1 

RPS4Y1 1 

KRT5 1 

SFTPA1 1 

PIP 1 

G6PC 1 

UGT1A9 1 

COL17A1 1 

MSMB 1 

ADIPOQ 1 

GLYATL1 1 

KRT20 1 

HAO2 1 

SPRR3 1 

ORM1 1 

ACSM2B 1 

FGA 1 

SLC9A3 1 

UGT2B7 1 

MYBPC1 1 

SCGB1A1 1 

APOA1 1 

NAT8 1 

UGT1A10 1 

KRT6B 1 

CDH16 1 



SFTPC 1 

SFTA3 1 

C20orf56 1 

NKX2.1 1 

ORM2 1 

PSCA 1 

KRT6A 1 

ALB 1 

KRT14 1 

HNF1B 1 

GLYAT 1 

KRT17 1 

PCK1 1 

TMEM213 1 

APOH 1 

SCEL 1 

APOB 1 

FGB 1 

UGT2A3 1 

SFTPB 1 

DMBT1 1 

ABP1 1 

PRAP1 1 

CYP3A4 1 

SLC2A2 1 

AKR1B10 1 

NAPSA 1 

BHMT 1 

F11 1 

C19orf77 1 

HABP2 1 

KRT16 1 

UGT2B15 1 

SERPINA6 1 

SERPINB5 1 

TMPRSS4 1 

SLC39A5 1 

TM4SF5 1 

CEACAM7 1 

CEACAM5 1 

HNF4A 1 

PGC 1 

C1QTNF6 1 



S100P 1 

PAH 1 

CHGA 1 

ALDOB 1 

CDHR5 1 

GP2 1 

TFF1 1 

MUC5B 1 

CDHR2 1 

SERPINA4 1 

SLC3A1 1 

CLCA4 1 

AMBP 1 

GC 1 

SLC17A6 1 

VIL1 1 

CDX2 1 

APCS 1 

FGL1 1 

LRP2 1 

CPB1 1 

CTSE 1 

MSLN 1 

LOC84740 1 

CEACAM6 1 

CRISP3 1 

CLDN18 1 

OLFM4 1 

KLK6 1 

C6orf222 1 

MUC13 1 

FXYD2 1 

REG3A 1 

SST 1 

TTR 1 

LGALS4 1 

USH1C 1 

MUC6 1 

DPCR1 1 

CDH17 1 

CRP 1 

NKX2.3 1 

PPEF1 1 



LEMD1 1 

SPINK1 1 

PTPRN 1 

CLPS 1 

MNX1 1 

CPA1 1 

REG4 1 

CELA3B 1 

CSMD2 1 

GRIN2D 1 

ANKH 1 

EPYC 1 

INHBA 1 

SCNN1B 1 

GOLGA8E 1 

MBOAT4 1 

ZNF679 1 

SYT13 1 

SCNN1G 1 

LOC100127888 1 

CUZD1 1 

GJD2 1 

SCG2 1 

NKX2.6 1 

OPN1LW 1 

SALL4 1 

ENPP3 1 

AMY2B 1 

LOC126536 1 

GNAT3 1 

CABP7 1 

DIRC1 1 

AMY2A 1 

GDF6 1 

NPC1L1 1 

ASPN 1 

POU6F2 1 
* The official symbol for each human gene; **The number of algorithms that selected the attribute; TCGA: The cancer genome 

atlas 



Table 6. List of 33 genes overlapped between two independent analyses (Genes were divided 

into two groups, upregulated differentially expressed genes and downregulated differentially 

expressed genes, based on the GEPIA online tool) 

Official symbol * Official full name 

A.    Upregulated differentially expressed genes 

COL11A1 collagen type XI alpha 1 chain 

COL10A1 collagen type X alpha 1 chain 

PPY pancreatic polypeptide 

CTHRC1 collagen triple helix repeat containing 1 

MMP11 matrix metallopeptidase 11 

CST1 cystatin SN 

TIMP1 TIMP metallopeptidase inhibitor 1 

GCG glucagon 

COL17A1 collagen type XVII alpha 1 chain 

KRT17 keratin 17 

SERPINB5 serpin family B member 5 

TMPRSS4 transmembrane serine protease 4 

S100P S100 calcium binding protein P 

CTSE cathepsin E 

CEACAM6 CEA cell adhesion molecule 6 

CLDN18 claudin 18 

OLFM4 olfactomedin 4 

LEMD1 LEM domain containing 1 

B.    Downregulated differentially expressed genes 

PNLIP pancreatic lipase 

CTRB2 chymotrypsinogen B2 

PRSS1 serine protease 1 

CTRC chymotrypsin C 

REG1A regenerating family member 1 alpha 

IAPP islet amyloid polypeptide 

SYCN syncollin 

RPS4Y1 ribosomal protein S4 Y-linked 1 

ALB albumin 

GP2 glycoprotein 2 

CPB1 carboxypeptidase B1 

REG3A regenerating family member 3 alpha 

CLPS colipase 

CPA1 carboxypeptidase A1 

CELA3B chymotrypsin like elastase 3B 
* The official symbol for each human gene; GEPIA: Gene expression profiling interactive analysis 



 Table 7. GO enrichment analysis of common genes was retrieved using g:Profiler 

Source Term_id Term name Count Adjusted_P_value 

MF GO:0004252 Serine-type endopeptidase activity 6 0.000126487 

MF GO:0008233 Peptidase activity 9 0.000146382 

MF GO:0008236 Serine-type peptidase activity 6 0.000222044 

MF GO:0017171 Serine hydrolase activity 6 0.000249781 

MF GO:0004175 Endopeptidase activity 7 0.001771483 

MF GO:0005201 Extracellular matrix structural constituent 5 0.002829998 

MF GO:0005198 Structural molecule activity 9 0.013651577 

MF GO:0030020 Extracellular matrix structural constituent conferring tensile strength 3 0.013960882 

BP GO:0006508 Proteolysis 12 0.010409277 

BP GO:0030198 Extracellular matrix organization 6 0.013745579 

BP GO:0043062 Extracellular structure organization 6 0.013991681 

BP GO:0045229 External encapsulating structure organization 6 0.014494631 

BP GO:0044278 Cell wall disruption in another organism 2 0.023847118 

CC GO:0005576 Extracellular region 27 7.72E-12 

CC GO:0005615 Extracellular space 24 8.09E-11 

CC GO:0005581 Collagen trimer 5 6.91074E-05 

CC GO:0030141 Secretory granule 9 0.001027823 

CC GO:0005788 Endoplasmic reticulum lumen 6 0.001660438 

CC GO:0099503 Secretory vesicle 9 0.004432751 

CC GO:0031012 Extracellular matrix 7 0.00457907 

CC GO:0030312 External encapsulating structure 7 0.004631483 

CC GO:0062023 Collagen-containing extracellular matrix 6 0.010027604 

CC GO:0034774 Secretory granule lumen 5 0.028209524 

CC GO:0060205 Cytoplasmic vesicle lumen 5 0.029469983 

CC GO:0031983 Vesicle lumen 5 0.030334047 

KEGG KEGG:04974 Protein digestion and absorption 8 9.42E-09 

KEGG kegg:04972 Pancreatic secretion 6 1.41923E-05 
GO: Gene ontology; BP: biological process; CC: cellular component; MF: molecular function; KEGG: kyoto encyclopedia of genes 
and genomes 

 

 

 

 


