Document Type : Original Article(s)

Authors

School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, China

10.30476/mejc.2024.101824.2046

Abstract

Background: N-Nornuciferine (N-NF) is an aporphine alkaloid in lotus leaf with a good resource for obtaining the biologically active substances with antioxidant properties. The purpose of this study was to explore the effect of N-NF on cell viability and apoptosis in A549 cells in vitro culture and to explore its mechanism of action.
Method: In this experimental study, we cultured A549 cells in vitro and added different concentrations of N-NF for intervention to explore cell apoptosis and its mechanism. Cell viability was detected by CCK-8, and cell apoptosis level was detected by FCM. The mechanism of action of N-NF was explored by regulating the expression of miR-361-3p. The data were analyzed using the one-way analysis of variance (ANOVA) technique in SPSS 22.0 software, with statistical significance set at a level of P < 0.05.
Results: The study results showed that N-NF could significantly inhibit the viability of A549 cells and promote apoptosis. Using dual-luciferase reporter gene and molecular biology detection experiments, it was found that N-NF inhibits the viability of A549 cells through inhibiting the expression of miR-361-3p and promoting the TRAF2/JNK pathway.
Conclusion: This study provides a basis for the development of N-NF as an anticancer drug and explains its mechanism of promoting apoptosis of A549 cells.

Keywords

Main Subjects

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination, and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.30476/mejc.2024.101824.2046

  1. Sharma P, McClees SF, Afaq F. Pomegranate for prevention and treatment of cancer: An update. Molecules. 2017;22(1):177. doi: 10.3390/molecules22010177. PMID: 28125044; PMCID: PMC5560105.
  2. Kubczak M, Szustka A, Rogalińska M. Molecular targets of natural compounds with anti-cancer properties. Int J Mol Sci. 2021;22(24):13659. doi: 10.3390/ijms222413659. PMID: 34948455; PMCID: PMC8708931.
  3. Rajabi S, Maresca M, Yumashev AV, Choopani R, Hajimehdipoor H. The most competent plant-derived natural products for targeting apoptosis in cancer therapy. Biomolecules. 2021;11(4):534. doi: 10.3390/biom11040534. PMID: 33916780; PMCID: PMC8066452.
  4. Paudel KR, Panth N. Phytochemical profile and biological activity of nelumbo nucifera. Evid Based Complement Alternat Med. 2015;2015:789124. doi: 10.1155/2015/789124. PMID: 27057194; PMCID: PMC4710907.
  5. Wan Y, Xia J, Xu JF, Chen L, Yang Y, Wu JJ, et al. Nuciferine, an active ingredient derived from lotus leaf, lights up the way for the potential treatment of obesity and obesity-related diseases. Pharmacol Res. 2022;175:106002. doi: 10.1016/j.phrs.2021.106002. PMID: 34826599.
  6. Jia XB, Zhang Q, Xu L, Yao WJ, Wei L. Lotus leaf flavonoids induce apoptosis of human lung cancer A549 cells through the ROS/p38 MAPK pathway. Biol Res. 2021;54(1):7. doi: 10.1186/s40659-021-00330-w. PMID: 33653412; PMCID: PMCPMC7923640.
  7. Tong Y, Li Z, Wu Y, Zhu S, Lu K, He Z. Lotus leaf extract inhibits ER- breast cancer cell migration and metastasis. Nutr Metab (Lond). 2021;18(1):20. doi: 10.1186/s12986-021-00549-0. PMID: 33602253; PMCID: PMC7891157.
  8. Li C, Zhou Z, Long X, Pan Y, Wang R, Chen X, et al. Inhibitory effect of lotus leaf-enriched flavonoid extract on the growth of HT-29 colon cancer cells through the expression of PI3K-related molecules. Biomed Res Int. 2022;2022:6770135. doi: 10.1155/2022/6770135. PMID: 35586809; PMCID: PMCPMC9110183.
  9. N'Guessan B B, Asiamah AD, Arthur NK, Frimpong-Manso S, Amoateng P, Amponsah SK, et al. Ethanolic extract of Nymphaea lotus L. (Nymphaeaceae) leaves exhibits in vitro antioxidant, in vivo anti-inflammatory and cytotoxic activities on Jurkat and MCF-7 cancer cell lines. BMC Complement Med Ther. 2021;21(1):22. doi: 10.1186/s12906-020-03195-w. PMID: 33413340; PMCID: PMCPMC7791887.
  10. Ouyang L. A quality evaluation method of lotus leaf based on its lipid lowering components using QAMS and chemometrics. Heliyon. 2023;9(12):e23009. doi: 10.1016/j.heliyon.2023.e23009. PMID: 38058446; PMCID: PMCPMC10696245.
  11. Zhang H, Chen G, Zhang Y, Yang M, Chen J, Guo M. Potential hypoglycemic, hypolipidemic, and anti-inflammatory bioactive components in Nelumbo nucifera leaves explored by bioaffinity ultrafiltration with multiple targets. Food Chem. 2022;375:131856. doi: 10.1016/j.foodchem.2021.131856. PMID: 34942503.
  12. Ye LH, He XX, You C, Tao X, Wang LS, Zhang MD, et al. Pharmacokinetics of Nuciferine and N-Nornuciferine, two major alkaloids from nelumbo nucifera leaves, in rat plasma and the brain. Front Pharmacol. 2018;9:902. doi: 10.3389/fphar.2018.00902. PMID: 30210336; PMCID: PMCPMC6123365.
  13. Bishayee A, Patel PA, Sharma P, Thoutireddy S, Das N. Lotus (Nelumbo nucifera Gaertn.) and its bioactive phytocompounds: A tribute to cancer prevention and intervention. Cancers (Basel). 2022;14(3). doi: 10.3390/cancers14030529. PMID: 35158798; PMCID: PMCPMC8833568.
  14. Ma L, Li R, Yao Z, Wang B, Liu Y, Liu C, et al. Computational study on new natural compound inhibitors of Traf2 and Nck-interacting kinase (TNIK). Aging (Albany NY). 2022;14(20):8394-410. doi: 10.18632/aging.204349. PMID: 36287174; PMCID: PMCPMC9648813.
  15. Li S, Wang D, Zhao J, Weathington NM, Shang D, Zhao Y. The deubiquitinating enzyme USP48 stabilizes TRAF2 and reduces E-cadherin-mediated adherens junctions. FASEB J. 2018;32(1):230-242. doi: 10.1096/fj.201700415RR. PMID: 28874458; PMCID: PMC5731130.
  16. Wang B, Jie Z, Joo D, Ordureau A, Liu P, Gan W, et al. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature. 2017;545(7654):365-9. doi: 10.1038/nature22344. PMID: 28489822; PMCID: PMCPMC5695540.
  17. Borghi A, Verstrepen L, Beyaert R. TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem Pharmacol. 2016;116:1-10. doi: 10.1016/j.bcp.2016.03.009. PMID: 26993379.
  18. Zhang J, Liang Y, Lin Y, Liu Y, YouYou, Yin W. IRE1α-TRAF2-ASK1 pathway is involved in CSTMP-induced apoptosis and ER stress in human non-small cell lung cancer A549 cells. Biomed Pharmacother. 2016;82:281-9. doi: 10.1016/j.biopha.2016.04.050. PMID: 27470364.
  19. Li Z, Sun J, Liu W, Wu J, Peng H, Zhao Y, et al. Changes in the circRNA expression profile of PC12 cells induced by TDCIPP exposure may regulate the downstream NF-κB pathway via the Traf2 gene. Chemosphere. 2020;254:126834. doi: 10.1016/j.chemosphere.2020.126834. PMID: 32339792.
  20. Zhou L, Huang X, Li H, Wang J, Lu Z. Triptolide improves Alzheimer's disease by regulating the NF‑κB signaling pathway through the lncRNA NEAT1/microRNA 361‑3p/TRAF2 axis. Exp Ther Med. 2023;26(3):440. doi: 10.3892/etm.2023.12139. PMID: 37614428; PMCID: PMC10443046.
  21. Chu D, Li P, Li Y, Shi J, Huang S, Jiao P. Identification of circ_0058357 as a regulator in non-small cell lung cancer cells resistant to cisplatin by miR-361-3p/ABCC1 axis. Thorac Cancer. 2021;12(21):2894-906. doi: 10.1111/1759-7714.14150. PMID: 34523261; PMCID: PMCPMC8563160.
  22. Chen YF, Pang YC, Wang HC, Wu PE, Chen ZJ, Huang D, et al. Identification of arnicolide C as a novel chemosensitizer to suppress mTOR/E2F1/FANCD2 axis in non-small cell lung cancer. Br J Pharmacol. 2024;181(8):1221-37. doi: 10.1111/bph.16281. PMID: 37926864.
  23. Rice J, Roberts H, Rai SN, Galandiuk S. Housekeeping genes for studies of plasma microRNA: A need for more precise standardization. Surgery. 2015;158(5):1345-51. doi: 10.1016/j.surg.2015.04.025. PMID: 26094174.
  24. Kim C, Kim B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients. 2018;10(8):1021. doi: 10.3390/nu10081021. PMID: 30081573; PMCID: PMCPMC6115829.
  25. Islam MR, Akash S, Rahman MM, Nowrin FT, Akter T, Shohag S, et al. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chem Biol Interact. 2022;368:110170. doi: 10.1016/j.cbi.2022.110170. PMID: 36202214.
  26. Tewari D, Patni P, Bishayee A, Sah AN, Bishayee A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin Cancer Biol. 2022;80:1-17. doi: 10.1016/j.semcancer.2019.12.008. PMID: 31866476.
  27. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200-16. doi: 10.1038/s41573-020-00114-z. PMID: 33510482; PMCID: PMCPMC7841765.
  28. Cho CK, Kang P, Jang CG, Lee SY, Lee YJ, Bae JW, et al. PBPK modeling to predict the pharmacokinetics of venlafaxine and its active metabolite in different CYP2D6 genotypes and drug-drug interactions with clarithromycin and paroxetine. Arch Pharm Res. 2024;Epub ahead of print. doi: 10.1007/s12272-024-01495-0. PMID: 38664354.
  29. Li XN, Zuo YZ, Qin L, Liu W, Li YH, Li JL. Atrazine-xenobiotic nuclear receptor interactions induce cardiac inflammation and endoplasmic reticulum stress in quail (Coturnix coturnix coturnix). Chemosphere. 2018;206:549-59. doi: 10.1016/j.chemosphere.2018.05.049. PMID: 29778080.
  30. Xu B, Xu J, Cai N, Li M, Liu L, Qin Y, et al. Roflumilast prevents ischemic stroke-induced neuronal damage by restricting GSK3β-mediated oxidative stress and IRE1α/TRAF2/JNK pathway. Free Radic Biol Med. 2021;163:281-96. doi: 10.1016/j.freeradbiomed.2020.12.018. PMID: 33359910.
  31. Gu Y, Liang C. TRAIP suppressed apoptosis and cell cycle to promote prostate cancer proliferation via TRAF2-PI3K-AKT pathway activation. Int Urol Nephrol. 2024;56(5):1639-48. doi: 10.1007/s11255-023-03890-w. PMID: 38100027.
  32. Rudnicki M, Perco P, B DH, Leierer J, Heinzel A, Mühlberger I, et al. Renal microRNA- and RNA-profiles in progressive chronic kidney disease. Eur J Clin Invest. 2016;46(3):213-26. doi: 10.1111/eci.12585. PMID: 26707063.