Document Type : Original Article(s)

Authors

1 Obstetrics and Gynecology Department, Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Obstetrics and Gynecology Department, Shiraz University of Medical Sciences, Shiraz, Iran

3 Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

10.30476/mejc.2024.101732.2042

Abstract

Background: The gene's 3′ untranslated region of stromal cell-derived factor1 (SDF-1/ CXC chemokine ligand 12 (CXCL12)) contains a polymorphism, known as SDF1-3′A at location 801, and has been linked to various types of cancers. The present study aimed to evaluate the relationship between this polymorphism and genetic predisposition to endometrial cancer.
Method: In this case-control study, DNA was extracted from blood samples of 108 endometrial cancer patients and 123 healthy individuals through salting out method. Genotyping was done by restriction fragment length polymorphism-polymerase chain reaction method, and the data were analyzed using chi-square test.
Results: A total number of 67 (62%) patients emerged as GG genotypes, 35 (32.4%) with GA, and 6 (5.6%) with AA genotypes. The frequency of GG, GA and AA in healthy control group was found to be 68 (55.3%), 50 (40.6%) and 5 (4.1%), respectively. Furthermore, the most frequent allele in both patient (169 (78.25%)) and control (186 (75.6%)) groups was G allele. However, no significant difference was observed between genotypes and alleles frequencies between the two groups. Furthermore, no significant association was observed between genotypes distribution and menopausal status (P = 0.70), tumor size (P = 0.62), degree of tumor differentiation (P = 0.74), stage (P = 0.35), tumor type (P = 0.22), and myometrial invasion (P = 0.22).
Conclusion: Our results show that SDF1-3′A at location 801 may not enhance the risk of endometrial cancer. However, further research with a larger sample size is required to understand the molecular behavior of the SDF-1 gene polymorphism in endometrial cancer.

Highlights

Fateme Sadat Najib (Google Scholar)

Mohammad Reza Haghshenas (Google Scholar)

Keywords

Main Subjects

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination, and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.30476/mejc.2024.101732.2042

  1. Katagiri R, Iwasaki M, Abe SK, Islam MR, Rahman MS, Saito E, et al. Reproductive factors and endometrial cancer risk among women. JAMA Netw Open. 2023;6(9):e2332296. doi: 10.1001/jamanetworkopen.2023.32296.
  2. Mahdy H, Casey MJ, Crotzer D. Endometrial Cancer. 2022 Sep 26. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 30252237.
  3. Constantine GD, Kessler G, Graham S, Goldstein SR. Increased incidence of endometrial cancer following the women's health initiative: An assessment of risk factors. J Womens Health (Larchmt). 2019;28(2):237-43. doi: 10.1089/jwh.2018.6956.
  4. Cespedes Feliciano EM, Hohensee C, Rosko AE, Anderson GL, Paskett ED, Zaslavsky O, et al. Association of prediagnostic frailty, change in frailty status, and mortality after cancer diagnosis in the women's health initiative. JAMA Netw Open. 2020;3(9):e2016747. doi: 10.1001/jamanetworkopen.2020.16747.
  5. Teng F, Tian WY, Wang YM, Zhang YF, Guo F, Zhao J, et al. Cancer-associated fibroblasts promote the progression of endometrial cancer via the SDF-1/CXCR4 axis. J Hematol Oncol. 2016;9:8. doi: 10.1186/s13045-015-0231-4.
  6. Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol. 2009;4:435-59. doi: 10.1146/annurev.pathol.4.110807.092145.
  7. Restaino S, Paglietti C, Arcieri M, Biasioli A, Della Martina M, Mariuzzi L, et al. Management of patients diagnosed with endometrial cancer: comparison of guidelines. Cancers (Basel).2023;15(4):1091. doi: 10.3390/cancers15041091.
  8. Naghibi AF, Daneshdoust D, Taha SR, Abedi S, Dehdezi PA, Zadeh MS, et al. Role of Cancer Stem Cell-Derived Extracellular Vesicles in Cancer Progression and Metastasis. Pathol Res Pract.2023;247:154558. doi: 10.1016/j.prp.2023.154558. 
  9. Chen Y, Gou X, Kong DK, Wang X, Wang J, Chen Z, et al. EMMPRIN regulates tumor growth and metastasis by recruiting bone marrow-derived cells through paracrine signaling of SDF-1 and VEGF. Oncotarget.2015;6(32):32575-85. doi: 10.18632/oncotarget.5331.
  10. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A.2013;110(50):20212-7. doi: 10.1073/pnas.1320318110. 
  11. Lu L, Li J, Jiang X, Bai R. CXCR4/CXCL12 axis: "old" pathway as "novel" target for anti-inflammatory drug discovery. Med Res Rev. 2024;44(3):1189-220. doi: 10.1002/med.22011.
  12. Cun Y, Diao B, Zhang Z, Wang G, Yu J, Ma L, et al. Role of the stromal cell derived factor-1 in the biological functions of endothelial progenitor cells and its underlying mechanisms. Exp Ther Med.2021;21(1):39. doi: 10.3892/etm.2020.9471. 
  13. Sadri F, Rezaei Z, Fereidouni M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development. Med Res Rev.2024;44(3):1189-220. doi: 10.1002/med.22011. 
  14. Skeeles LE, Fleming JL, Mahler KL, Toland AE. The impact of 3'UTR variants on differential expression of candidate cancer susceptibility genes. PLoS One. 2013;8(3):e58609. doi: 10.1371/journal.pone.0058609.
  15. Wei M, Rong C, Zhao J, Liu X, Yang F, Zeng J. Role of SDF-1 3'A polymorphism in HIV-1 disease progression: A systematic review and meta-analysis. Gene.2018;677:182-8. doi: 10.1016/j.gene.2018.07.058. 
  16. Lima ÉRG, Queiroz MAF, Lima SS, Machado LFA, Cayres-Vallinoto IMV, Vallinoto ACR, et al. CCR5∆32 and SDF1 3'A: Gene variants, expression and influence on biological markers for the clinical progression to AIDS among HIV-1 virus controllers in a mixed population of the Amazon region of Brazil. Int J Mol Sci. 2023;24(5):4958. doi: 10.3390/ijms24054958.
  17. Tong X, Ma Y, Deng H, Wang X, Liu S, Yan Z, et al. The SDF-1 rs1801157 polymorphism is associated with cancer risk: An update pooled analysis and FPRP test of 17,876 participants. Sci Rep. 2016;6:27466. doi: 10.1038/srep27466.
  18. Dabbaghmanesh MH, Rezaei B, Haghshenas MR, Montazeri-Najafabady N, Mohammadian Amiri R, Erfani N. CCR4 1014C/T and CCL22 16C/A genetic variations in Iranian patients with thyroid cancer. Middle East J Cancer. 2022;13(3):404-10. doi: 10. 30476/mejc.2021.87469.1421.
  19. Aladle DAAM, Ghannam MA, El-Ashwah S, Ghobrial FEI, Mortada MI. Association of SDF-1 gene polymorphism with increased risk of acute myeloid leukemia patients. Asian Pac J Cancer Prev. 2021;22(4):1035-43. doi: 10.31557/APJCP.2021.22.4.1035.
  20. Haghshenas MR, Ashraf MJ, Khademi B, Ghaderi A, Erfani N, Razmkhah M. Chemokine and chemokine receptor patterns in patients with benign and malignant salivary gland tumors: a distinct role for CCR7. Eur Cytokine Netw.2017;28(1):27-35. doi: 10.1684/ecn.2017.0388.
  21. Alsayed R, Khan AQ, Ahmad F, Ansari AW, Alam MA, Buddenkotte J, et al. Epigenetic regulation of CXCR4 signaling in cancer pathogenesis and progression. Semin Cancer Biol.2022;86(Pt 2):697-708. doi: 10.1016/j.semcancer.2022.03.019.
  22. Yang P, Hu Y, Zhou Q. The CXCL12-CXCR4 signaling axis plays a key role in cancer metastasis and is a potential target for developing novel therapeutics against metastatic cancer. Curr Med Chem. 2020;27(33):5543-61. doi: 10.2174/0929867326666191113113110.
  23. Jaszczynska-Nowinka K, Rucinski M, Ziolkowska A, Markowska A, Malendowicz LK. Expression of SDF-1 and CXCR4 transcript variants and CXCR7 in epithelial ovarian cancer. Oncol Lett. 2014;7(5):1618-24. doi: 10.3892/ol.2014.1897.
  24. Chang S, Li S, Yang B, Yao K, Miao R, Liang G, et al. CXCL12 G801A polymorphism and susceptibility to glioma: a case–control study. Genet Mol Res.2015;14(4):17399-405. doi: 10.4238/2015.December.21.9.
  25. Roszak A, Misztal M, Sowińska A, Jagodziński PP. Stromal cell-derived factor-1 G801A polymorphism and the risk factors for cervical cancer. Mol Med Rep.2015;11(6):4633-8. doi: 10.3892/mmr.2015.3315. 
  26. Okuyama Kishima M, de Oliveira CE, Banin-Hirata BK, Losi-Guembarovski R, Brajão de Oliveira K, Amarante MK, et al. Immunohistochemical expression of CXCR4 on breast cancer and its clinical significance. Anal Cell Pathol (Amst). 2015;2015:891020. doi: 10.1155/2015/891020.
  27. Wang RX, Ji P, Gong Y, Shao ZM, Chen S. SDF-1 expression and tumor-infiltrating lymphocytes identify clinical subtypes of triple-negative breast cancer with different responses to neoadjuvant chemotherapy and survival. Front Immunol.2022:13:940635. doi: 10.3389/fimmu.2022.940635. 
  28. Zhou W, Guo S, Liu M, Burow ME, Wang G. Targeting CXCL12/CXCR4 Axis in Tumor Immunotherapy. Curr Med Chem.2019;26(17):3026-41. doi: 10.2174/0929867324666170830111531.
  29. Bouyssou JM, Ghobrial IM, Roccaro AM. Targeting SDF-1 in multiple myeloma tumor microenvironment. Cancer Lett. 2016;380(1):315-8. doi: 10.1016/j.canlet.2015.11.028.
  30. Ladikou EE, Chevassut T, Pepper CJ, Pepper AG. Dissecting the role of the CXCL12/CXCR4 axis in acute myeloid leukaemia. Cancer Lett.2016;380(1):315-8. doi: 10.1016/j.canlet.2015.11.028.
  31. Tavernier E, Aanei C, Solly F, Flandrin-Gresta P, Campos L, Guyotat D. CXCR4: a new therapeutic target of the leukaemic cell? Role of the SDF-1/CXCR4 axis in acute myeloid leukaemia. Bull Cancer.2014;101(6):593-604. doi: 10.1684/bdc.2014.1925.
  32. Xu W, Cui R, Yu H. The association between SDF-1 G801A polymorphism and non-small cell lung cancer risk in a Chinese Han population. Int J Clin Exp Med.2015;8(8):14065-9. eCollection 2015.
  33. Yousefipour GA, Haghshenas MR, Yahyazadeh S, Erfani N. Stromal cell derived factor-1 genetic variation at locus 801 in patients with myasthenia gravis. Iran J Immunol. 2011;8(2):90-5. PMID: 21705836.