Document Type : Original Article(s)

Authors

1 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2 Department of Basic Oncology of Health Institute of Ege University, Izmir, Turkey

3 Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

10.30476/mejc.2024.101524.2035

Abstract

Background: Aberrant methylation and expression of various noncoding RNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), confer a great potential as tumor markers. This study aimed to investigate miR-30b DNA methylation and Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT-1) expression patterns as potential diagnostic biomarkers for non-small cell lung cancer (NSCLC).
Method: In this cross-sectional study, miR-30b DNA methylation and MALAT-1 expression patterns were first explored using microarray data retrieved from the NSCLC dataset in the Cancer Genome Atlas (TCGA)-LUNG. Then, the obtained results were further validated in internal samples. Subsequently, genomic DNA was extracted and modified by sodium bisulfite to determine DNA methylation using q-MSP. Total RNA was extracted and transcribed to cDNA to measure transcription level by qRT-PCR. GraphPad 6 Prism v.8 was used to perform the statistical analyses. Comparisons between groups in internal samples were conducted by paired student's t-test, while Mann-Whitney U test was used to analyze TCGA-LUNG data (P < 0.05).
Results: Our results indicated miR-30b hypermethylation, miR-30b downregulation and lncRNA MALAT-1 overexpression in NSCLC tumor samples compared with marginal normal samples. These changes were significantly associated with the stage of malignancy like lymph node metastasis. Also, using receiver operating characteristic curve analysis, MALAT-1 expression, and miR-30b methylation and expression patterns were found as possible diagnostic biomarkers for NSCLC (Area under the curve was 0.70, 0.67, and 0.74, respectively).
Conclusion: We found involvement of miR-30b hypermethylation and downregulation as well as lncRNA MALAT-1 overexpression with tumor outcomes of NSCLC patients.

Highlights

Mortaza Raeisi (Google Scholar)

Keywords

Main Subjects

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination, and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.30476/mejc.2024.101524.2035

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660. PMID: 33538338.
  2. Shanehbandi D, Asadi M, Seyedrezazadeh E, Zafari V, Shekari N, Akbari M, et al. MicroRNA-based biomarkers in lung cancer: Recent advances and potential applications. Curr Mol Med. 2023;23(7):648-67. doi: 10.2174/2772432817666220520085719. PMID: 35619321.
  3. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108. doi: 10.3322/caac.21262. PMID: 25651787.
  4. Zarredar H, Farajnia S, Ansarin K, Baradaran B, Aria M, Asadi M. Synergistic effect of novel EGFR inhibitor AZD8931 and p38α siRNA in lung adenocarcinoma cancer cells. Anticancer Agents Med Chem. 2019;19(5):638-44. doi: 10.2174/1871520619666190301125203. PMID: 30827261.
  5. Chen J, Wang R, Zhang K, Chen LB. Long non-coding RNAs in non-small cell lung cancer as biomarkers and therapeutic targets. J Cell Mol Med. 2014;18(12):2425-36. doi: 10.1111/jcmm.12431. PMID: 25297942; PMCID: PMC4302648.
  6. Ricciuti B, Mencaroni C, Paglialunga L, Paciullo F, Crinò L, Chiari R, et al. Long noncoding RNAs: new insights into non-small cell lung cancer biology, diagnosis and therapy. Med Oncol. 2016;33(2):18. doi: 10.1007/s12032-016-0731-2. PMID: 26786153.
  7. Zhang R, Xia Y, Wang Z, Zheng J, Chen Y, Li X, et al. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun. 2017;490(2):406-14. doi: 10.1016/j.bbrc.2017.06.055. PMID: 28623135.
  8. Zarredar H, Pashapour S, Farajnia S, Ansarin K, Baradaran B, Ahmadzadeh V, et al. Targeting the KRAS, p38α, and NF-κB in lung adenocarcinoma cancer cells: The effect of combining RNA interferences with a chemical inhibitor. J Cell Biochem. 2019; 120(6):10670-7. doi: 10.1002/jcb.28357. PMID: 30656741.
  9. Brown JA, Bulkley D, Wang J, Valenstein ML, Yario TA, Steitz TA, et al. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol. 2014;21(7):633-40. doi: 10.1038/nsmb.2844. PMID: 24952594; PMCID: PMC4096706.
  10. Aftabi Y, Ansarin K, Shanehbandi D, Khalili M, Seyedrezazadeh E, Rahbarnia L, et al. Long non-coding RNAs as potential biomarkers in the prognosis and diagnosis of lung cancer: A review and target analysis. IUBMB Life. 2021;73(2):307-27. doi: 10.1002/iub.2430. PMID: 33369006.
  11. Zong X, Nakagawa S, Freier SM, Fei J, Ha T, Prasanth SG, et al. Natural antisense RNA promotes 3' end processing and maturation of MALAT1 lncRNA. Nucleic Acids Res. 2016;44(6):2898-908. doi: 10.1093/nar/gkw047. PMID: 26826711; PMCID: PMC4824109.
  12. Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E, Moscato P, et al. Genome-wide analysis of long noncoding RNA stability. Genome Res. 2012;22(5):885-98. doi: 10.1101/gr.131037.111. PMID: 22406755; PMCID: PMC3337434.
  13. Tani H, Nakamura Y, Ijiri K, Akimitsu N. Stability of MALAT-1, a nuclear long non-coding RNA in mammalian cells, varies in various cancer cells. Drug Discov Ther. 2010;4(4):235-9. PMID: 22491206.
  14. Fei J, Jadaliha M, Harmon TS, Li ITS, Hua B, Hao Q, et al. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J Cell Sci. 2017;130(24):4180-92. doi: 10.1242/jcs.206854. PMID: 29133588; PMCID: PMC5769577.
  15. West JA, Davis CP, Sunwoo H, Simon MD, Sadreyev RI, Wang PI, et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell. 2014;55(5):791-802. doi: 10.1016/j.molcel.2014.07.012. PMID: 25155612; PMCID: PMC4428586.
  16. Zheng L, Zhang Y, Fu Y, Gong H, Guo J, Wu K, et al. Long non-coding RNA MALAT1 regulates BLCAP mRNA expression through binding to miR-339-5p and promotes poor prognosis in breast cancer. Biosci Rep. 2019;39(2):BSR20181284. doi: 10.1042/BSR20181284. PMID: 30683807; PMCID: PMC6379223.
  17. Hu D, Zhang B, Yu M, Shi W, Zhang L. Identification of prognostic biomarkers and drug target prediction for colon cancer according to a competitive endogenous RNA network. Mol Med Rep. 2020;22(2):620-32. doi: 10.3892/mmr.2020.11171. PMID: 32468035; PMCID: PMC7339803.
  18. Arun K, Arunkumar G, Bennet D, Chandramohan SM, Murugan AK, Munirajan AK. Comprehensive analysis of aberrantly expressed lncRNAs and construction of ceRNA network in gastric cancer. Oncotarget. 2018;9(26):18386-99. doi: 10.18632/oncotarget.24841. PMID: 29719612; PMCID: PMC5915079.
  19. Liu X, Huang G, Zhang J, Zhang L, Liang Z. Prognostic and clinicopathological significance of long noncoding RNA MALAT-1 expression in patients with non-small cell lung cancer: A meta-analysis. PLoS One. 2020;15(10):e0240321. doi: 10.1371/journal.pone.0240321. PMID: 33052949; PMCID: PMC7556468.
  20. Zarredar H, Ansarin K, Baradaran B, Shekari N, Eyvazi S, Safari F, et al. Critical microRNAs in Lung Cancer: Recent Advances and Potential Applications. Anticancer Agents Med Chem. 2018;18(14):1991-2005. doi: 10.2174/1871520618666180808125459. PMID: 30088452.
  21. Lu G, Zhang Y. MicroRNA-340-5p suppresses non-small cell lung cancer cell growth and metastasis by targeting ZNF503. Cell Mol Biol Lett. 2019;24:34. doi: 10.1186/s11658-019-0161-1. PMID: 31160893; PMCID: PMC6537386.
  22. Zhong K, Chen K, Han L, Li B. MicroRNA-30b/c inhibits non-small cell lung cancer cell proliferation by targeting Rab18. BMC Cancer. 2014;14:703. doi: 10.1186/1471-2407-14-703. PMID: 25249344; PMCID: PMC4180967.
  23. Quintavalle C, Donnarumma E, Iaboni M, Roscigno G, Garofalo M, Romano G, et al. Effect of miR-21 and miR-30b/c on TRAIL-induced apoptosis in glioma cells. Oncogene. 2013;32(34):4001-8. doi: 10.1038/onc.2012.410. PMID: 22964638.
  24. Yu F, Deng H, Yao H, Liu Q, Su F, Song E. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene. 2010;29(29):4194-204. doi: 10.1038/onc.2010.167. PMID: 20498642.
  25. Brighenti M. MicroRNA and MET in lung cancer. Ann Transl Med. 2015;3(5):68. doi: 10.3978/j.issn.2305-5839.2015.01.26. PMID: 25992367; PMCID: PMC4402600.
  26. Qiu H, Shen X, Chen B, Chen T, Feng G, Chen S, et al. miR-30b-5p inhibits cancer progression and enhances cisplatin sensitivity in lung cancer through targeting LRP8. Apoptosis. 2021;26(5-6):261-76. doi: 10.1007/s10495-021-01665-1. PMID: 33779882.
  27. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19(1A):A68-77. doi: 10.5114/wo.2014.47136. PMID: 25691825; PMCID: PMC4322527.
  28. Duan ZY, Cai GY, Li JJ, Bu R, Wang N, Yin P, et al. U6 can be used as a housekeeping gene for urinary sediment miRNA studies of IgA nephropathy. Sci Rep. 2018;8(1):10875. doi: 10.1038/s41598-018-29297-7. PMID: 30022109; PMCID: PMC6052115.
  29. Azmi AS, Li Y, Aboukameel A, Muqbil I, Philip PA, Mohammad RM. DNA-methylation-caused downregulation of miR-30 contributes to the high expression of XPO1 and the aggressive growth of tumors in pancreatic ductal adenocarcinoma. Cancers (Basel). 2019;11(8):1101. doi: 10.3390/cancers11081101. PMID: 31382411; PMCID: PMC6721494.
  30. Gu YF, Zhang H, Su D, Mo ML, Song P, Zhang F, et al. miR-30b and miR-30c expression predicted response to tyrosine kinase inhibitors as first line treatment in non-small cell lung cancer. Chin Med J (Engl). 2013;126(23):4435-9. PMID: 24286402.
  31. Qi Z, Zhang B, Zhang J, Hu Q, Xu F, Chen B, et al. MicroRNA-30b inhibits non-small cell lung cancer cell growth by targeting the epidermal growth factor receptor. Neoplasma. 2018;65(2):192-200. doi: 10.4149/neo_2018_170217N118. PMID: 29534579.
  32. Zhang Q, Liu S, Zhang J, Ma X, Dong M, Sun B, et al. Roles and regulatory mechanisms of miR-30b in cancer, cardiovascular disease, and metabolic disorders (Review). Exp Ther Med. 2021;21(1):44. doi: 10.3892/etm.2020.9475. PMID: 33273973; PMCID: PMC7706387.
  33. Qiao F, Zhang K, Gong P, Wang L, Hu J, Lu S, et al. Decreased miR-30b-5p expression by DNMT1 methylation regulation involved in gastric cancer metastasis. Mol Biol Rep. 2014;41(9):5693-700. doi: 10.1007/s11033-014-3439-4. PMID: 24913034.
  34. Xiong Y, Wang Y, Wang L, Huang Y, Xu Y, Xu L, et al. MicroRNA-30b targets Snail to impede epithelial-mesenchymal transition in pancreatic cancer stem cells. J Cancer. 2018;9(12):2147-59. doi: 10.7150/jca.25006. PMID: 29937934; PMCID: PMC6010678.
  35. Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031-41. doi: 10.1038/sj.onc.1206928. PMID: 12970751.
  36. Hou J, Zhang G, Wang X, Wang Y, Wang K. Functions and mechanisms of lncRNA MALAT1 in cancer chemotherapy resistance. Biomark Res. 2023;11(1):23. doi: 10.1186/s40364-023-00467-8. PMID: 36829256; PMCID: PMC9960193.
  37. Xi Z, Si J, Nan J. LncRNA MALAT1 potentiates autophagy‑associated cisplatin resistance by regulating the microRNA‑30b/autophagy‑related gene 5 axis in gastric cancer. Int J Oncol. 2019;54(1):239-48. doi: 10.3892/ijo.2018.4609. PMID: 30365113.
  38. Tee AE, Liu B, Song R, Li J, Pasquier E, Cheung BB, et al. The long noncoding RNA MALAT1 promotes tumor-driven angiogenesis by up-regulating pro-angiogenic gene expression. Oncotarget. 2016;7(8):8663-75. doi: 10.18632/oncotarget.6675. PMID: 26848616; PMCID: PMC4890995.
  39. Zhang YF, Li CS, Zhou Y, Lu XH. Propofol facilitates cisplatin sensitivity via lncRNA MALAT1/miR-30e/ATG5 axis through suppressing autophagy in gastric cancer. Life Sci. 2020;244:117280. doi: 10.1016/j.lfs.2020.117280. PMID: 31926239.
  40. Saulino DM, Younes PS, Bailey JM, Younes M. CRM1/XPO1 expression in pancreatic adenocarcinoma correlates with survivin expression and the proliferative activity. Oncotarget. 2018;9(30):21289-95. doi: 10.18632/oncotarget.25088. PMID: 29765539; PMCID: PMC5940369.
  41. Liu X, Chong Y, Tu Y, Liu N, Yue C, Qi Z, et al. CRM1/XPO1 is associated with clinical outcome in glioma and represents a therapeutic target by perturbing multiple core pathways. J Hematol Oncol. 2016;9(1):108. doi: 10.1186/s13045-016-0338-2. PMID: 27733172; PMCID: PMC5059893.
  42. Xiao H, Zhu Q, Zhou J. Long non-coding RNA MALAT1 interaction with miR-429 regulates the proliferation and EMT of lung adenocarcinoma cells through RhoA. Int J Clin Exp Pathol. 2019;12(2):419-30. PMID: 31933847; PMCID: PMC6945089.