Document Type : Original Article(s)

Authors

1 Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India

2 Molecular Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India

3 Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India

4 Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India

10.30476/mejc.2024.101434.2026

Abstract

Background: Myosins, a superfamily of actin-dependent molecular motors, have emerged as crucial players in tumorigenesis. This study investigates the role of Myosin ⅩⅥ (MYO16), an unconventional myosin, in HNSCC.
Method: In this case-control study, we employed multiple databases to investigate the expression of MYO16 in samples from the cancer genome atlas (TCGA), focusing on head and neck squamous cell carcinoma (HNSCC) along with associated clinicopathological features. Since HNSCC primarily includes oral squamous cell carcinoma (OSCC), we additionally validated the mRNA level of MYO16 in OSCC samples using the real-time quantitative polymerase chain reaction (RT-qPCR) method. Moreover, we used various online databases to uncover the relationship between MYO16 and tumor infiltration. Statistical analysis was performed using GraphPad Prism, and the significance was determined with Student's t-test.
Results: Comprehensive analyses across diverse databases consistently reveal a significant upregulation of MYO16 expression in HNSCC. RT-qPCR analysis revealed that MYO16 is significantly up-regulated in OSCC tumor tissue samples. Correlation with clinicopathological features and survival analysis underscores its potential prognostic value. Furthermore, MYO16 interactions with immune cells within the tumor microenvironment are negatively associated with immune genes.
Conclusion: This study identifies MYO16 as a potential biomarker associated with HNSCC development, and emphasizes its significance as a potential therapeutic target, aligning with its diverse roles across cellular processes. Further experimental studies are necessary to elucidate MYO16 functional implications and clinical relevance in HNSCC.

Highlights

Paramasivam Arumugam (Google Scholar)

Keywords

Main Subjects

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination, and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.30476/mejc.2024.101434.2026

  1. Alsahafi E, Begg K, Amelio I, Raulf N, Lucarelli P, Sauter T, et al. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis. 2019;10(8):540. doi: 10.1038/s41419-019-1769-9.
  2. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29(32):4294-301. doi: 10.1200/JCO.2011.36.4596. Corrected and republished in: J Clin Oncol. 2023;41(17):3081-8.
  3. Young LS, Dawson CW. Epstein-Barr virus and nasopharyngeal carcinoma. Chin J Cancer. 2014;33(12):581-90. doi: 10.5732/cjc.014.10197.
  4. Chauhan R, Trivedi V, Rani R, Singh U. A study of head and neck cancer patients with reference to tobacco use, gender, and subsite distribution. South Asian J Cancer. 2022;11(1):46-51. doi: 10.1055/s-0041-1740601.
  5. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1):92. doi: 10.1038/s41572-020-00224-3. Erratum in: Nat Rev Dis Primers. 2023;9(1):4.
  6. Balachander K, Paramasivam A. Anti-PD-1 agent: A promising immunotherapy drug for oral cancer? Oral Oncol. 2022;132:105997. doi: 10.1016/j.oraloncology.2022.105997.
  7. Balachander K, Vijayashree Priyadharsini J, Paramasivam A. Advances in oral cancer early diagnosis and treatment strategies with liquid biopsy-based approaches. Oral Oncol. 2022;134:106108. doi: 10.1016/j.oraloncology.2022.106108.
  8. Li YR, Yang WX. Myosins as fundamental components during tumorigenesis: diverse and indispensable. Oncotarget. 2016;7(29):46785-812. doi: 10.18632/oncotarget.8800.
  9. Li YR, Yang WX. Myosin superfamily: The multi-functional and irreplaceable factors in spermatogenesis and testicular tumors. Gene. 2016;576(1 Pt 2):195-207. doi: 10.1016/j.gene.2015.10.022.
  10. Murphy DA, Courtneidge SA. The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol. 2011;12(7):413-26. doi: 10.1038/nrm3141.
  11. Yilmaz M, Christofori G. Mechanisms of motility in metastasizing cells. Mol Cancer Res. 2010;8(5):629-42. doi: 10.1158/1541-7786.MCR-10-0139.
  12. Mangold S, Norwood SJ, Yap AS, Collins BM. The juxtamembrane domain of the E-cadherin cytoplasmic tail contributes to its interaction with Myosin VI. Bioarchitecture. 2012;2(5):185-8. doi: 10.4161/bioa.22082.
  13. Arjonen A, Kaukonen R, Mattila E, Rouhi P, Högnäs G, Sihto H, et al. Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. J Clin Invest. 2014;124(3):1069-82. doi: 10.1172/JCI67280.
  14. Naydenov NG, Lechuga S, Huang EH, Ivanov AI. Myosin motors: Novel regulators and therapeutic targets in colorectal cancer. Cancers (Basel). 2021;13(4):741. doi: 10.3390/cancers13040741.
  15. Cameron RS, Liu C, Pihkala JP. Myosin 16 levels fluctuate during the cell cycle and are downregulated in response to DNA replication stress. Cytoskeleton (Hoboken). 2013;70(6):328-48. doi: 10.1002/cm.21109.
  16. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18-27. doi: 10.1016/j.neo.2022.01.001.
  17. Kannan B, Pandi C, Pandi A, Jayaseelan VP, Arumugam P. Triggering receptor expressed in myeloid cells 1 (TREM1) as a potential prognostic biomarker and association with immune infiltration in oral squamous cell carcinoma. Arch Oral Biol. 2024;161:105926. doi: 10.1016/j.archoralbio.2024.105926.
  18. Avs KR, Pandi C, Kannan B, Pandi A, Jayaseelan VP, Arumugam P. RFC3 serves as a novel prognostic biomarker and target for head and neck squamous cell carcinoma. Clin Oral Investig. 2023;27(11):6961-9. doi: 10.1007/s00784-023-05316-4.
  19. Nagy Á, Munkácsy G, Győrffy B. Pancancer survival analysis of cancer hallmark genes. Sci Rep. 2021;11(1):6047. doi: 10.1038/s41598-021-84787-5.
  20. Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;35(20):4200-2. doi: 10.1093/bioinformatics/btz210.
  21. Telek E, Kengyel A, Bugyi B. Myosin XVI in the nervous system. Cells. 2020;9(8):1903. doi: 10.3390/cells9081903.
  22. Ohmura G, Tsujikawa T, Yaguchi T, Kawamura N, Mikami S, Sugiyama J, et al. Aberrant Myosin 1b expression promotes cell migration and lymph node metastasis of HNSCC. Mol Cancer Res. 2015;13(4):721-31. doi: 10.1158/1541-7786.MCR-14-0410.
  23. Kaneko K, Satoh K, Masamune A, Satoh A, Shimosegawa T. Myosin light chain kinase inhibitors can block invasion and adhesion of human pancreatic cancer cell lines. Pancreas. 2002;24(1):34-41. doi: 10.1097/00006676-200201000-00005.
  24. Cui WJ, Liu Y, Zhou XL, Wang FZ, Zhang XD, Ye LH. Myosin light chain kinase is responsible for high proliferative ability of breast cancer cells via anti-apoptosis involving p38 pathway. Acta Pharmacol Sin. 2010;31(6):725-32. doi: 10.1038/aps.2010.56.
  25. Jacobs K, Van Gele M, Forsyth R, Brochez L, Vanhoecke B, De Wever O, et al. P-cadherin counteracts myosin II-B function: implications in melanoma progression. Mol Cancer. 2010;9:255. doi: 10.1186/1476-4598-9-255.
  26. Dong W, Chen X, Chen P, Yue D, Zhu L, Fan Q. Inactivation of MYO5B promotes invasion and motility in gastric cancer cells. Dig Dis Sci. 2012;57(5):1247-52. doi: 10.1007/s10620-011-1989-z.
  27. Lan L, Han H, Zuo H, Chen Z, Du Y, Zhao W, et al. Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. Int J Cancer. 2010;126(1):53-64. doi: 10.1002/ijc.24641.
  28. Jung EJ, Liu G, Zhou W, Chen X. Myosin VI is a mediator of the p53-dependent cell survival pathway. Mol Cell Biol. 2006;26(6):2175-86. doi: 10.1128/MCB.26.6.2175-2186.2006.
  29. Dunn TA, Chen S, Faith DA, Hicks JL, Platz EA, Chen Y, et al. A novel role of myosin VI in human prostate cancer. Am J Pathol. 2006;169(5):1843-54. doi: 10.2353/ajpath.2006.060316.
  30. Wei S, Dunn TA, Isaacs WB, De Marzo AM, Luo J. GOLPH2 and MYO6: putative prostate cancer markers localized to the Golgi apparatus. Prostate. 2008;68(13):1387-95. doi: 10.1002/pros.20806.
  31. Omelchenko T, Hall A. Myosin-IXA regulates collective epithelial cell migration by targeting RhoGAP activity to cell-cell junctions. Curr Biol. 2012;22(4):278-88. doi: 10.1016/j.cub.2012.01.014.
  32. Mischel PS, Shai R, Shi T, Horvath S, Lu KV, Choe G, et al. Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene. 2003;22(15):2361-73. doi: 10.1038/sj.onc.1206344.
  33. Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK, Let al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood. 2003;102(8):2951-9. doi: 10.1182/blood-2003-01-0338.