Document Type : Original Article(s)


1 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2 Department of Basic Oncology, Health Institute, Ege University, Izmir, Turkey

3 Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran



Background: Lung cancer is the most lethal malignancy in the world due to its poor prognosis. DNA methylation change has been identified as a valuable target for cancer, diagnosis, and prognosis. Ferritin heavy chain 1 (FTH-1) and SHOX homeobox 2 (SHOX2) DNA methylation were investigated in non-small cell lung cancer (NSCLC) as novel epigenetic biomarkers.
Method: In this case-control study, we initially evaluated the diagnostic value of FTH-1 and SHOX2 DNA methylation, and the Cancer Genome Atlas (TCGA) data on the methylation profile of NSCLC was analyzed. Whole DNA was extracted and bisulfite modification was performed. Then, the methylation status of FTH-1 and SHOX2 was evaluated using Quantitative Methylation Specific polymerase chain reaction (PCR) (qMSP). We used GraphPad Prism version 6.00 program for statistical analysis. Mann-Whitney U test (TCGA-LUNG), paired t-test (internal samples) and receiver operating characteristic (ROC) curve analysis were used to evaluate the statistical differences of DNA methylation between NSCLC tissues samples and adjacent normal specimens (P < 0.05, mean ± SD).
Results: TCGA and q-MSP results showed significant FTH-1 hypomethylation and SHOX2 hypermethylation in NSCLC tissues in comparison with margin specimens. Also, FTH-1 and SHOX2 methylation levels were significantly associated with the clinical stage of malignancy. Furthermore, The ROC curve analysis revealed that the area under the curve (AUC) values for FTH-1 and SHOX2 were determined to be 0.751 and 0.8676, respectively. This indicates the importance of FTH-1 and SHOX2 as diagnostic biomarkers for NSCLC.
Conclusion: This study indicates that FTH-1 and SHOX2 methylation could be promising targets for liquid biopsy application of lung cancer.


Mortaza Raeisi (Google Scholar)


Main Subjects

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination, and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.30476/mejc.2024.100926.2008

  1. Shanehbandi D, Asadi M, Seyedrezazadeh E, Zafari V, Shekari N, Akbari M, et al. MicroRNA-based biomarkers in lung cancer: recent advances and potential applications. Curr Mol Med. 2023;23(7):648-67. doi: 10.2174/2772432817666220520085719.
  2. Zarredar H, Farajnia S, Ansarin K, Baradaran B, Aria M, Asadi M. Synergistic effect of novel EGFR inhibitor AZD8931 and p38α siRNA in lung adenocarcinoma cancer cells. Anticancer Agents Med Chem. 2019;19(5):638-44. doi: 10.2174/1871520619666190301125203.
  3. Han X, Wang J, Sun Y. Circulating tumor DNA as biomarkers for cancer detection. Genomics Proteomics Bioinformatics. 2017;15(2):59-72. doi: 10.1016/j.gpb.2016.12.004.
  4. Vizoso M, Puig M, Carmona FJ, Maqueda M, Velásquez A, Gómez A, et al. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts. Carcinogenesis. 2015;36(12):1453-63. doi: 10.1093/carcin/bgv146.
  5. Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet. 2012;13(10):679-92. doi: 10.1038/nrg3270.
  6. Ehrlich M. DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics. 2019;14(12):1141-63. doi: 10.1080/15592294.2019.1638701.
  7. Darwiche K, Zarogoulidis P, Baehner K, Welter S, Tetzner R, Wohlschlaeger J, et al. Assessment of SHOX2 methylation in EBUS-TBNA specimen improves accuracy in lung cancer staging. Ann Oncol. 2013;24(11):2866-70. doi: 10.1093/annonc/mdt365.
  8. Peng X, Liu X, Xu L, Li Y, Wang H, Song L, et al. The mSHOX2 is capable of assessing the therapeutic effect and predicting the prognosis of stage IV lung cancer. J Thorac Dis. 2019;11(6):2458-69. doi: 10.21037/jtd.2019.05.81.
  9. Dietrich D, Kneip C, Raji O, Liloglou T, Seegebarth A, Schlegel T, et al. Performance evaluation of the DNA methylation biomarker SHOX2 for the aid in diagnosis of lung cancer based on the analysis of bronchial aspirates. Int J Oncol. 2012;40(3):825-32. doi: 10.3892/ijo.2011.1264.
  10. Shanehbandi D, Saei AA, Zarredar H, Barzegari A. Vibration and glycerol-mediated plasmid DNA transformation for Escherichia coli. FEMS Microbiol Lett. 2013;348(1):74-8. doi: 10.1111/1574-6968.12247.
  11. Li N, Zeng Y, Huang J. Signaling pathways and clinical application of RASSF1A and SHOX2 in lung cancer. J Cancer Res Clin Oncol. 2020;146(6):1379-93. doi: 10.1007/s00432-020-03188-9.
  12. Liu F, Du ZY, He JL, Liu XQ, Yu QB, Wang YX. FTH1 binds to Daxx and inhibits Daxx-mediated cell apoptosis. Mol Biol Rep. 2012;39(2):873-9. doi: 10.1007/s11033-011-0811-5.
  13. Tesfay L, Huhn AJ, Hatcher H, Torti FM, Torti SV. Ferritin blocks inhibitory effects of two-chain high molecular weight kininogen (HKa) on adhesion and survival signaling in endothelial cells. PLoS One. 2012;7(7):e40030. doi: 10.1371/journal.pone.0040030.
  14. Biamonte F, Battaglia AM, Zolea F, Oliveira DM, Aversa I, Santamaria G, et al. Ferritin heavy subunit enhances apoptosis of non-small cell lung cancer cells through modulation of miR-125b/p53 axis. Cell Death Dis. 2018;9(12):1174. doi: 10.1038/s41419-018-1216-3.
  15. Aversa I, Zolea F, Ieranò C, Bulotta S, Trotta AM, Faniello MC, et al. Epithelial-to-mesenchymal transition in FHC-silenced cells: the role of CXCR4/CXCL12 axis. J Exp Clin Cancer Res. 2017;36(1):104. doi: 10.1186/s13046-017-0571-8.
  16. Lobello N, Biamonte F, Pisanu ME, Faniello MC, Jakopin Ž, Chiarella E, et al. Ferritin heavy chain is a negative regulator of ovarian cancer stem cell expansion and epithelial to mesenchymal transition. Oncotarget. 2016;7(38):62019-62033. doi: 10.18632/oncotarget.11495.
  17. Yao F, Cui X, Zhang Y, Bei Z, Wang H, Zhao D, et al. Iron regulatory protein 1 promotes ferroptosis by sustaining cellular iron homeostasis in melanoma. Oncol Lett. 2021;22(3):657. doi: 10.3892/ol.2021.12918.
  18. Goldstein M, Kastan MB. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med. 2015;66:129-43. doi: 10.1146/annurev-med-081313-121208.
  19. Cheng J, Wei D, Ji Y, Chen L, Yang L, Li G, et al. Integrative analysis of DNA methylation and gene expression reveals hepatocellular carcinoma-specific diagnostic biomarkers. Genome Med. 2018;10(1):42. doi: 10.1186/s13073-018-0548-z.
  20. Yang Z, Qi W, Sun L, Zhou H, Zhou B, Hu Y. DNA methylation analysis of selected genes for the detection of early-stage lung cancer using circulating cell-free DNA. Adv Clin Exp Med. 2019;28(3):355-60. doi: 10.17219/acem/84935.
  21. Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31(2):107-25. doi: 10.1038/s41422-020-00441-1.
  22. Liu NQ, De Marchi T, Timmermans AM, Beekhof R, Trapman-Jansen AM, Foekens R, et al. Ferritin heavy chain in triple negative breast cancer: a favorable prognostic marker that relates to a cluster of differentiation 8 positive (CD8+) effector T-cell response. Mol Cell Proteomics. 2014;13(7):1814-27. doi: 10.1074/mcp.M113.037176.
  23. Feng Y, Liu Q, Zhu J, Xie F, Li L. Efficiency of ferritin as an MRI reporter gene in NPC cells is enhanced by iron supplementation. J Biomed Biotechnol. 2012;2012:434878. doi: 10.1155/2012/434878.
  24. Muhammad JS, Bajbouj K, Shafarin J, Hamad M. Estrogen-induced epigenetic silencing of FTH1 and TFRC genes reduces liver cancer cell growth and survival. Epigenetics. 2020;15(12):1302-18. doi: 10.1080/15592294.2020.1770917.
  25. Ali A, Shafarin J, Abu Jabal R, Aljabi N, Hamad M, Sualeh Muhammad J, et al. Ferritin heavy chain (FTH1) exerts significant antigrowth effects in breast cancer cells by inhibiting the expression of c-MYC. FEBS Open Bio. 2021;11(11):3101-14. doi: 10.1002/2211-5463.13303.
  26. Lu C, Zhao H, Luo C, Lei T, Zhang M. Knockdown of ferritin heavy chain (FTH) inhibits the migration of prostate cancer through reducing S100A4, S100A2, and S100P expression. Transl Cancer Res. 2020;9(9):5418-29. doi: 10.21037/tcr-19-2852.
  27. Biamonte F, Zolea F, Bisognin A, Di Sanzo M, Saccoman C, Scumaci D, et al. H-ferritin-regulated microRNAs modulate gene expression in K562 cells. PLoS One. 2015;10(3):e0122105. doi: 10.1371/journal.pone.0122105.
  28. Li Z, Wang Y. Long non-coding RNA FTH1P3 promotes the metastasis and aggressiveness of non-small cell lung carcinoma by inducing epithelial-mesenchymal transition. Int J Clin Exp Pathol. 2019;12(10):3782-90. PMID: 31933766
  29. Liu XQ, Tufman A, Kiefl R, Li GF, Ma QL, Huber RM. Identification of lung adenocarcinoma-specific exosome RNAs in peripheral blood by RNA-Seq analysis. Eur Rev Med Pharmacol Sci. 2020;24(4):1877-86. doi: 10.26355/eurrev_202002_20366.
  30. Li N, Zeng Y, Tai M, Lin B, Zhu D, Luo Y, et al. Analysis of the prognostic value and gene expression mechanism of SHOX2 in lung adenocarcinoma. Front Mol Biosci. 2021;8:688274. doi: 10.3389/fmolb.2021.688274.
  31. Huang W, Huang H, Zhang S, Wang X, Ouyang J, Lin Z, et al. A novel diagnosis method based on methylation analysis of SHOX2 and serum biomarker for early stage lung cancer. Cancer Control. 2020;27(1):1073274820969703. doi: 10.1177/1073274820969703.
  32. Zeng S, Lin C, Huang Y. miR-375 Combined with SHOX2 Methylation has higher diagnostic efficacy for non-small-cell lung cancer. Mol Biotechnol. 2023;65(7):1187-97. doi: 10.1007/s12033-022-00604-y.
  33. Vo TTL, Nguyen TN, Nguyen TT, Pham ATD, Vuong DL, Ta VT, et al. SHOX2 methylation in Vietnamese patients with lung cancer. Mol Biol Rep. 2022;49(5):3413-21. doi: 10.1007/s11033-022-07172-z.
  34. Kneip C, Schmidt B, Seegebarth A, Weickmann S, Fleischhacker M, Liebenberg V, et al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol. 2011;6(10):1632-8. doi: 10.1097/JTO.0b013e318220ef9a.
  35. Feng H, Shao W, Du L, Qing X, Zhang Z, Liang C, et al. Detection of SHOX2 DNA methylation by methylation-specific PCR in non-small cell lung cancer. Transl Cancer Res. 2020;9(10):6070-7. doi: 10.21037/tcr-20-887.