Document Type : Review Article(s)


1 Institute of Clinical Laboratory Diagnostics, Osijek University Hospital Centre, Osijek, Croatia

2 Department of Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia

3 Department of Food and Nutrition Research, Faculty of Food Technology Osijek, University of Osijek, Osijek, Croatia



Colorectal cancer (CRC) stands apart from other malignancies due to its pronounced association with dietary patterns. Approximately 70% of all CRC cases arise sporadically, and suboptimal dietary and lifestyle choices can override certain predisposing factors, including a family history of the disease. Hitherto, the most compelling evidence linking CRC risk has been attributed to heme iron, predominantly found in red and processed meats, although this form of iron constitutes a mere 20% of total dietary iron. The human organism maintains a remarkably intricate and tightly regulated iron homeostasis system owing to the deleterious consequences of both excessive and deficient serum iron levels. Dietary sources remain the sole means to replenish iron losses. Despite the abundant presence of iron in various food sources, its absorption, commonly referred to as bioavailability, is notably restricted due to an array of dietary inhibitors and homeostatic mechanisms.
Consequently, a substantial 80% of ingested dietary iron is excreted in fecal matter, resulting in fecal iron concentrations that surpass those found in most body tissues by a tenfold margin. Prolonged exposure of the colorectum to excessive fecal iron, combined with concurrent physiological alterations, can instigate oncogenic processes leading to CRC. Notably, despite their recognized significance in CRC pathology, dietary habits, and lifestyle factors have been sporadically integrated into predictive models, primarily concerning CRC recurrence. Nonetheless, these models exhibit disparities in the dietary components, rendering them non-universally applicable. In light of these disparities, postulating that incorporating bioavailable iron, in conjunction with hepcidin levels, may offer superior predictive value for CRC risk assessment, and herein, elucidates the scientific foundation supporting this hypothesis.


Ines Banjari (Google Scholar)


Main Subjects

How to cite this article:

Rolić T, Mandić S, Lukić I, Banjari I. Can dietary iron bioavailability influence colorectal cancer risk and prognosis? Middle East J Cancer. 2024;15(3):163-75. doi:10.30476/mejc.2023.99357.1939.

  1. World Health Organization. International Agency for Research on Cancer. GLOBOCAN Cancer Today Data, 2020. [Accessed date: 16 Nov 2022] Available at:
  2. EC, European Commission. Europe's Beating Cancer Plan: Let's strive for more. Published 4 February 2020. [Accessed date: 10 Oct 2022] Available at:
  3. ECIS, European Cancer Information System. Estimates of cancer incidence and mortality in 2020, for all countries. [Accessed date: 10 Oct 2022] Available at:
  4. WCRFI, World Cancer Research Fund International. Continuous Update Project – Colorectal Cancer Statistics, 2020. [Accessed date: 10 Oct 2022] Available at:
  5. IARC, International Agency for Research on Cancer. Cancer Screening in the European Union - Report on the implementation of the Council Recommendation on cancer screening; 2017 May. 333 p. Available from: Brussels: European Commission.
  6. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941-53. doi: 10.1002/ijc.31937.
  7. Yang Y, Wang G, He J, Ren S, Wu F, Zhang J, et al. Gender differences in colorectal cancer survival: A meta-analysis. Int J Cancer. 2017;141(10):1942-9. doi: 10.1002/ijc.30827.
  8. Majek O, Gondos A, Jansen L, Emrich K, Holleczek B, Katalinic A, et al. Sex differences in colorectal cancer survival: population-based analysis of 164,996 colorectal cancer patients in Germany. PLoS One. 2013;8(7):e68077. doi: 10.1371/journal.pone.0068077.
  9. Baran B, Mert Ozupek N, Yerli Tetik N, Acar E, Bekcioglu O, Baskin Y. Difference between left-sided and right-sided colorectal cancer: A focused review of literature. Gastroenterology Res. 2018;11(4):264-73. doi: 10.14740/gr1062w.
  10. Banjari I, Hjartåker A. Dietary sources of iron and vitamin B12: Is this the missing link in colorectal carcinogenesis? Med Hypotheses. 2018;116:105-10. doi: 10.1016/j.mehy.2018.05.003.
  11. Yurgelun MB, Hampel H. Recent advances in Lynch syndrome: diagnosis, treatment, and cancer prevention. Am Soc Clin Oncol Educ Book. 2018;38:101-9. doi: 10.1200/EDBK_208341.
  12. Medina Pabón MA, Babiker HM. A Review of Hereditary Colorectal Cancers. [Updated 2022 Sept 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. [Accessed date: 10 Oct 2022] Available at:
  13. Dworakowska D, Grossman AB. Colonic cancer and acromegaly. Front Endocrinol (Lausanne). 2019;10:390. doi: 10.3389/fendo.2019.00390.
  14. Kim ER, Chang DK. Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. World J Gastroenterol. 2014;20(29):9872-81. doi: 10.3748/wjg.v20.i29.9872.
  15. Meyer J, Buchs NC, Ris F. Risk of colorectal cancer in patients with diverticular disease. World J Clin Oncol. 2018;9(6):119-22. doi: 10.5306/wjco.v9.i6.119.
  16. Hadjiliadis D, Khoruts A, Zauber AG, Hempstead SE, Maisonneuve P, Lowenfels AB, et al. Cystic fibrosis colorectal cancer screening consensus recommendations. Gastroenterology. 2018;154(3):736-45.e14. doi: 10.1053/j.gastro.2017.12.012.
  17. Peeters PJ, Bazelier MT, Leufkens HG, de Vries F, De Bruin ML. The risk of colorectal cancer in patients with type 2 diabetes: associations with treatment stage and obesity. Diabetes Care. 2015;38(3):495-502. doi: 10.2337/dc14-1175.
  18. Zhu B, Wu X, Wu B, Pei D, Zhang L, Wei L. The relationship between diabetes and colorectal cancer prognosis: A meta-analysis based on the cohort studies. PLoS One. 2017;12(4):e0176068. doi: 10.1371/journal.pone.0176068.
  19. Khoury W, Lavery IC, Kiran RP. Effects of chronic immunosuppression on long-term oncologic outcomes for colorectal cancer patients undergoing surgery. Ann Surg. 2011;253(2):323-7. doi: 10.1097/SLA.0b013e3181fc9d36.
  20. Macrae FA. Colorectal cancer: Epidemiology, risk factors, and protective factors. UpToDate. [Updated on: 2022 Jan 21]. [Accessed date: 10 Oct 2022]. Available at:
  21. Ma H, Brosens LAA, Offerhaus GJA, Giardiello FM, de Leng WWJ, Montgomery EA. Pathology and genetics of hereditary colorectal cancer. Pathology. 2018;50(1):49-59. doi: 10.1016/j.pathol.2017.09.004.
  22. Banjari I, Fako J. The importance of an up-to-date evidence based diet planning for colorectal cancer patients. Arch Oncol. 2013;21(3/4):160-2. doi: 10.2298/AOO1304160B.
  23. Johnson CM, Wei C, Ensor JE, Smolenski DJ, Amos CI, Levin B, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 2013;24:1207-22. doi: 10.1007/s10552-013-0201-5.
  24. Abid Z, Cross AJ, Sinha R. Meat, dairy, and cancer. Am J Clin Nutr. 2014;100(Suppl 1):386S-93S. doi: 10.3945/ajcn.113.071597.
  25. Ashmore JH, Rogers CJ, Kelleher SL, Lesko SM, Hartman TJ. Dietary iron and colorectal cancer risk: a review of human population studies. Crit Rev Food Sci Nutr. 2016;56(6):1012-20. doi: 10.1080/10408398.2012.749208.
  26. Fonseca-Nunes A, Jakszyn P, Agudo A. Iron and cancer risk—a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomarkers Prev. 2013;23(1):12-31. doi: 10.1158/1055-9965.EPI-13-0733.
  27. Bastide NM, Pierre FHF, Corpet DE. Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res. 2011;4(2):177-84. doi: 10.1158/1940-6207.CAPR-10-0113.
  28. Cross AJ, Sinha R, Wood RJ, Xue X, Huang WY, Yeager M, et al. Iron homeostasis and distal colorectal adenoma risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Prev Res. 2011;4(9):1465-75. doi: 10.1158/1940-6207.CAPR-11-0103.
  29. Kabat GC, Miller AB, Jain M, Rohan TE. A cohort study of dietary iron and heme iron intake and risk of colorectal cancer in women. Br J Cancer. 2007;97:118-22. doi: 10.1038/sj.bjc.6603837.
  30. Key TJ, Appleby PN, Masset G, Brunner EJ, Cade JE, Greenwood DC, et al. Vitamins, minerals, essential fatty acids and colorectal cancer risk in the United Kingdom Dietary Cohort Consortium. Int J Cancer. 2012;131:E320-5. doi: 10.1002/ijc.27386.
  31. Kato I, Dnistrian AM, Schwartz M, Toniolo P, Koenig K, Shore RE, et al. Iron intake, body iron stores and colorectal cancer risk in women: a nested case-control study. Int J Cancer. 1999;80(5):693-8. doi: 10.1002/(sici)1097-0215(19990301)80:5<693::aid-ijc11>;2-g.
  32. World Cancer Research Fund International. Diet, nutrition, physical activity and colorectal cancer. [Updated at: 2018] [Accessed date: 16 Nov 2022]. Available at:
  33. Zhao Z, Feng Q, Yin Z, Shuang J, Bai B, Yu P, et al. Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis. Oncotarget. 2017;8(47):83306-14. doi: 10.18632/oncotarget.20667.
  34. Johnston BC, Zeraatkar D, Han MA, Vernooij RWM, Valli C, El Dib R, et al. Unprocessed red meat and processed meat consumption: dietary guideline recommendations from the nutritional recommendations (NutriRECS) Consortium. Ann Intern Med. 2019;171(10):756-64. doi: 10.7326/M19-1621.
  35. Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV. Iron and cancer: recent insights. Ann N Y Acad Sci. 2016;1368:149-61. doi: 10.1111/nyas.13008.
  36. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19(2):164-74.
  37. Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta. 2015;1852:1347-59. doi: 10.1016/j.bbadis.2015.03.011.
  38. Kovac S, Anderson GJ, Baldwin GS. Gastrins, iron homeostasis and colorectal cancer. Biochim Biophys Acta. 2011;1813(5):889-95. doi: 10.1016/j.bbamcr.2011.02.007.
  39. Dainty JR, Berry R, Lynch SR, Harvey LJ, Fairweather-Tait SJ. Estimation of dietary iron bioavailability from food iron intake and iron status. PLoS One. 2014;9(10):e111824. doi: 10.1371/journal.pone.0111824.
  40. Nemeth E, Ganz T. The role of Hepcidin in iron metabolism. Acta Haematol. 2009;122:78-86. doi: 10.1159/000243791.
  41. Banjari I. Iron deficiency anemia and pregnancy. In: Khan J, editor. Current topics in anemia. InTech Open; 2017. doi: 10.5772/intechopen.69114.
  42. Hallberg L, Hultén L. Prediction of dietary iron absorption: an algorithm for calculating absorption and bioavailability of dietary iron. Am J Clin Nutr. 2000;71:1147-60. doi: 10.1093/ajcn/71.5.1147.
  43. Keum N, Lee DH, Greenwood DC, Zhang X, Giovannucci EL. Calcium intake and colorectal adenoma risk: dose-response meta-analysis of prospective observational studies. Int J Cancer. 2015;136(7):1680-7. doi: 10.1002/ijc.28840.
  44. Bonovas S, Fiorino G, Lytras T, Malesci A, Danese S. Calcium supplementation for the prevention of colorectal adenomas: A systematic review and meta-analysis of randomized controlled trials. World J Gastroenterol. 2016;22(18):4594-603. doi: 10.3748/wjg.v22.i18.4594.
  45. Collins D, Hogan AM, Winter DC. Microbial and viral pathogens in colorectal cancer. Lancet Oncol. 2011;12(5):504-12. doi: 10.1016/S1470-2045(10)70186-8.
  46. Butt J, Epplein M. Helicobacter pylori and colorectal cancer-A bacterium going abroad? PLoS Pathog. 2019;15(8):e1007861. doi: 10.1371/journal.ppat.1007861.
  47. Butt J, Varga MG, Blot WJ, Teras L, Visvanathan K, Le Marchand L, et al. Serologic response to helicobacter pylori proteins associated with risk of colorectal cancer among diverse populations in the United States. Gastroenterology. 2019;156(1):175-86e2. doi: 10.1053/j.gastro.2018.09.054.
  48. USA – US Department of Agriculture, Agricultural Research Service. [Internet] USDA national nutrient database for standard reference, release 23. 2010. [Accessed date: 28 Sept 2022]. Available at:
  49. Hurrell R, Egli I. Iron bioavailability and dietary reference values. Am J Clin Nutr. 2010;91(5):1461S-7S. doi: 10.3945/ajcn.2010.28674F.
  50. Hallberg L, Hultén L. Perspectives on iron absorption. Blood Cell Mol Dis. 2002;29(3):562-73. doi: 10.1006/bcmd.2002.0603.
  51. Wheal MS, DeCourcy-Ireland E, Bogard JR, Thilsted SH, Stangoulis JCR. Measurement of haem and total iron in fish, shrimp and prawn using ICP-MS: Implications for dietary iron intake calculations. Food Chem. 2016;201:222-9. doi: 10.1016/j.foodchem.2016.01.080.
  52. Layrisse M, Cook JD, Martinez C, Roche M, Kuhn IN, Walker RB, et al. Food iron absorption: a comparison of vegetable and animal foods. Blood. 1969;33(3):430-43.
  53. Genannt Bonsmann SS, Walczyk T, Renggli S, Hurrell RF. Oxalic acid does not influence nonhaem iron absorption in humans: a comparison of kale and spinach meals. Eur J Clin Nutr. 2008;62(3):336-41. doi: 10.1038/sj.ejcn.1602721.
  54. Gupta RK, Gangoliya SS, Singh NK. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol. 2015;52(2):676-84. doi: 10.1007/s13197-013-0978-y.
  55. Lott JNA, Ockenden I, Raboy V, Batten GD. Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Science Research. 2000;10:11-33. doi: 10.1017/S0960258500000039.
  56. Government of Western Australia. Department of Primary Industries and Regional Development. Agriculture and Food. [Internet] Nutritional aspects of quinoa. [Updated 2018 Oct 23] [Accessed date: 28 Sept 2022]. Available at:
  57. Premasiri H, Ekanayake S. Oxalic acid content in green leafy vegetables. Vidyodaya J of Sci. 2011;16:7-17.
  58. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727-47. doi: 10.1093/ajcn/79.5.727.
  59. Gaur T, Rao PB, Kushwaha KPS. Nutritional and anti-nutritional components of some selected edible mushroom species. Indian Journal of Natural Products and Research. 2016;7(2):155-61. doi: 10.56042/ijnpr.v7i2.10559.
  60. Spottiswoode N, Duffy PE, Drakesmith H. Iron, anemia and hepcidin in malaria. Front Pharmacol. 2014;5:125. doi: 10.3389/fphar.2014.00125.
  61. Ganz T. Anemia of Inflammation. N Engl J Med. 2019;381:1148-57. doi: 10.1056/NEJMra1804281.
  62. Pagani A, Nai A, Silvestri L, Camaschella C. Hepcidin and anemia: A tight relationship. Front Physiol. 2019;10:A1294. doi: 10.3389/fphys.2019.01294.
  63. Woodman R, Ferrucci L, Guralnik J. Anemia in older adults. Curr Opin Hematol. 2005;12(2):123-8. doi: 10.1097/01.moh.0000154030.13020.85.
  64. Ramos-Nino ME. The role of chronic inflammation in obesity-associated cancers. ISRN Oncol. 2013;2013:697521. doi: 10.1155/2013/697521.
  65. Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol. 2016;34(35):4270-6. doi: 10.1200/JCO.2016.67.4283.
  66. Coimbra S, Catarino C, Santos-Silva A. The role of adipocytes in the modulation of iron metabolism in obesity. Obes Rev. 2013;14(10):771-9. doi: 10.1111/obr.12057.
  67. Phillips E, Horniblow RD, Poole V, Bedford M, Ward DG, Kirkham AJ, et al. A potential role for hepcidin in obesity-driven colorectal tumourigenesis. Oncol Rep. 2018;39(1):392-400. doi: 10.3892/or.2017.6062.
  68. Ward DG, Roberts K, Brookes MJ, Joy H, Martin A, Ismail T, et al. Increased hepcidin expression in colorectal carcinogenesis. World J Gastroenterol. 2008;14(9):1339-45. doi: 10.3748/wjg.14.1339.
  69. Pusatcioglu CK, Nemeth E, Fantuzzi G, Llor X, Freels S, Tussing-Humphreys L, et al. Systemic and tumor level iron regulation in men with colorectal cancer: a case control study. Nutr Metab (Lond). 2014;11:21. doi: 10.1186/1743-7075-11-21.
  70. Vela D, Vela-Gaxha Z. Differential regulation of hepcidin in cancer and non-cancer tissues and its clinical implications. Exp Mol Med. 2018;50(2):e436. doi: 10.1038/emm.2017.273.
  71. Sornjai W, Nguyen Van Long F, Pion N, Pasquer A, Saurin JC, Marcel V, et al. Iron and hepcidin mediate human colorectal cancer cell growth. Chem Biol Interact. 2020;319:109021. doi: 10.1016/j.cbi.2020.109021.
  72. Noguchi-Sasaki M, Sasaki Y, Shimonaka Y, Mori K, Fujimoto-Ouchi K. Treatment with anti-IL-6 receptor antibody prevented increase in serum hepcidin levels and improved anemia in mice inoculated with IL-6-producing lung carcinoma cells. BMC Cancer. 2016;16:270. doi: 10.1186/s12885-016-2305-2.
  73. Zeinivand M, Jamali-Raeufy N, Zavvari F. The beneficial role of Hepcidin peptide inhibitor in improved the symptoms of COVID-19 in diabetics: anti-inflammatory and potential therapeutic effects. J Diabetes Metab Disord. 2022;21(2):1797-807. doi: 10.1007/s40200-022-01053-9.
  74. Cappellini MD, Musallam KM, Taher AT. Iron deficiency anaemia revisited. J Intern Med. 2020;287(2):153-70. doi: 10.1111/joim.13004.
  75. Castiella A, Múgica F, Zapata E, Zubiaurre L, Iribarren A, de Juan MD, et al. Gender and plasma iron biomarkers, but not HFE gene mutations, increase the risk of colorectal cancer and polyps. Tumour Biol. 2015;36(9):6959-63. doi: 10.1007/s13277-015-3406-2.
  76. McSorley ST, Tham A, Steele CW, Dolan RD, Roxburgh CS, Horgan PG, et al. Quantitative data on red cell measures of iron status and their relation to the magnitude of the systemic inflammatory response and survival in patients with colorectal cancer. Eur J Surg Oncol. 2019;45(7):1205-11. doi: 10.1016/j.ejso.2019.02.027.
  77. Cross AJ, Gunter MJ, Wood RJ, Pietinen P, Taylor PR, Virtamo J, et al. Iron and colorectal cancer risk in the α-tocopherol, β-carotene cancer prevention study. Int J Cancer. 2006;118:3147-52. doi: 10.1002/ijc.21780.
  78. Gaur A, Collins H, Wulaningsih W, Holmberg L, Garmo H, Hammar N, et al. Iron metabolism and risk of cancer in the Swedish AMORIS study. Cancer Causes Control. 2013;24:1393-402. doi: 10.1007/s10552-013-0219-8.
  79. Wen CP, Lee JH, Tai YP, Wen C, Wu SB, Tsai MK, et al. High serum iron is associated with increased cancer risk. Cancer Res. 2014;74(22):6589-97. doi: 10.1158/0008-5472.CAN-14-0360.
  80. Quintana Pacheco DA, Sookthai D, Graf ME, Schübel R, Johnson T, Katzke VA, et al. Iron status in relation to cancer risk and mortality: Findings from a population-based prospective study. Int J Cancer. 2018;143(3):561-9. doi: 10.1002/ijc.31384.
  81. Kurbel S, Kovačić D, Radić R, Drenjančević I, Glavina K, Ivandić A. Cancer incidences in the digestive tube: is cobalamin a small intestine cytoprotector? Med Hypotheses. 2000;54(3):412-6. doi: 10.1054/mehy.1999.0862.
  82. Rush EC, Katre P, Yajnik CS. Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease. Eur J Clin Nutr. 2014;68(1):2-7. doi: 10.1038/ejcn.2013.232.
  83. Kune G, Watson L. Colorectal cancer protective effects and the dietary micronutrients folate, methionine, vitamins B6, B12, C, E, selenium, and lycopene. Nutr Cancer. 2006;56(1):11-21. doi: 10.1207/s15327914nc5601_3.
  84. Ziegler RG, Lim U. One-carbon metabolism, colorectal carcinogenesis, chemoprevention-with caution. J Natl Cancer Inst. 2007;99(16):1214-5. doi: 10.1007/s40495-015-0028-8.
  85. Eussen SJ, Vollset SE, Hustad S, Midttun Ø, Meyer K, Fredriksen A, et al. Plasma vitamins B2, B6, and B12, and related genetic variants as predictors of colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2010;19(10):2549-61. doi: 10.1158/1055-9965.EPI-10-0407.
  86. Le Marchand L, White KK, Nomura AM, Wilkens LR, Selhub JS, Tiirikainen M, et al. Plasma levels of B vitamins and colorectal cancer risk: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2009;18(8):2195-201. doi: 10.1158/1055-9965.EPI-09-0141.
  87. Dahlin AM, Van Guelpen B, Hultdin J, Johansson I, Hallmans G, Palmqvist R. Plasma vitamin B12 concentrations and the risk of colorectal cancer: A nested case-referent study. Int J Cancer. 2008;122(9):2057-61. doi: 10.1002/ijc.23299.
  88. Sun NH, Huang XZ, Wang SB, Li Y, Wang LY, Wang HC, et al. A dose-response meta-analysis reveals an association be-tween vitamin B12 and colorectal cancer risk. Public Health Nutr. 2016;19(8):1446-56. doi: 10.1017/S136898001500261X.
  89. Gräsbeck R. Hooked to vitamin B12 since 1955: A historical perspective. Biochimie. 2013;95(5):970–5. doi: 10.1016/j.biochi.2012.12.007.
  90. Eurostat. [Internet] Overweight and obesity - BMI statistics, 2019. [Accessed date: 16 Nov 2022.]. Available at:
  91. Anderson L, Merle Benbow H, Manzin G. Europe on a Plate: Food, Identity and Cultural Diversity in Contemporary Europe. Australian & New Zealand Journal of European Studies (ANZJES). 2016;8(1):2-15. doi: 10.30722/anzjes.vol8.iss1.15155.
  92. Mertens E, Kuijsten A, Dofková M, Mistura L, D'Addezio L, Turrini A, et al. Geographic and socioeconomic diversity of food and nutrient intakes: a comparison of four European countries. Eur J Nutr. 2019;58(4):1475-93. doi: 10.1007/s00394-018-1673-6.
  93. Banjari I, Kožić S. Dietary intake of vitamin B12 in relation to diet and lifestyle characteristics in a population at high risk for CRC. Central Eur J Pub Health. 2018;26(4):253-9. doi: 10.21101/cejph.a4585.
  94. Farinetti A, Zurlo V, Manenti A, Coppi F, Mattioli AV. Mediterranean diet and colorectal cancer: A systematic review. Nutrition. 2017;43-44:83-8. doi: 10.1016/j.nut.2017.06.008.
  95. Croatian Institute of Public Health. Croatian National Cancer Registry. Cancer Incidence in Croatia 2019. Bulletin No. 44; 2021. Available from: Zagreb: Croatian Institute of Public Health.
  96. EFSA DRV, European Food Safety Authority. [Internet] Dietary Reference Values for the EU, 2019. [Accessed date: 8 Oct 2022]. Available from:
  97. Lobo AR, Cocato ML, De Sa LRM, Colli C. Dietary iron overload: short- and long-term effects on cell morphometry in growing rats. J Nutr Sci Vitaminol. 2014;60:397-402. doi: 10.3177/jnsv.60.397.
  98. Wurzelmann JI, Silver A, Schreinemachers DM, Sandler RS, Everson RB. Iron intake and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 1996;5(7):503-7.
  99. Humphries A, Wright NA. Colonic crypt organization and tumorigenesis. Nat Rev Cancer. 2008;8:415-24. doi: 10.1038/nrc2392.
  100. Owen RW, Weisgerber UM, Spiegelhalder B, Bartsch H. Faecal phytic acid and its relation to other putative markers of risk for colorectal cancer. Gut. 1996;38(4):591-7. doi: 10.1136/gut.38.4.591.
  101. Walker AR, Walker BF. Faecal pH and colon cancer. Gut. 1992;33(4):572. doi: 10.1136/gut.33.4.572.
  102. Veettil SK, Wong TY, Loo YS, Playdon MC, Lai NM, Giovannucci EL, et al. Role of diet in colorectal cancer incidence: umbrella review of meta-analyses of prospective observational studies. JAMA Netw Open. 2021;4(2):e2037341. doi: 10.1001/jamanetworkopen.2020.37341.
  103. Papadimitriou N, Bouras E, van den Brandt PA, Muller DC, Papadopoulou A, Heath AK, et al. A prospective diet-wide association study for risk of colorectal cancer in EPIC. Clin Gastroenterol Hepatol. 2022;20(4):864-73.e13. doi: 10.1016/j.cgh.2021.04.028.
  104. Nguyen S, Li H, Yu D, Gao J, Gao Y, Tran H, et al. Adherence to dietary recommendations and colorectal cancer risk: results from two prospective cohort studies. Int J Epidemiol. 2020;49(1):270-80. doi: 10.1093/ije/dyz118.
  105. Van Blarigan EL, Fuchs CS, Niedzwiecki D, Zhang S, Saltz LB, Mayer RJ, et al. Association of survival with adherence to the american cancer society nutrition and physical activity guidelines for cancer survivors after colon cancer diagnosis: The CALGB 89803/Alliance trial. JAMA Oncol. 2018;4(6):783-90. doi: 10.1001/jamaoncol.2018.0126.
  106. Cheng E, Ou FS, Ma C, Spiegelman D, Zhang S, Zhou X, et al. Diet- and lifestyle-based prediction models to estimate cancer recurrence and death in patients with stage III colon cancer (CALGB 89803/Alliance). J Clin Oncol. 2022;40(7):740-51. doi: 10.1200/JCO.21.01784.
  107. Aleksandrova K, Reichmann R, Kaaks R, Jenab M, Bueno-de-Mesquita HB, Dahm CC, et al. Development and validation of a lifestyle-based model for colorectal cancer risk prediction: the LiFeCRC score. BMC Med. 2021;19(1):1. doi: 10.1186/s12916-020-01826-0.