Document Type : Original Article(s)

Authors

1 Department of Pharmacology and Medical Sciences, Faculty of Pharmacy, Al-Azhar University of Gaza, Gaza, Palestine

2 Cancer Research Center of Marseille (CRCM), CNRS, Faculty of Medicine, Aix Marseille University, Marseille, France

Abstract

Background: One cause of tumor relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the alteration of the graft-versus-tumor effect of early reconstituting natural killer (NK) cells due to overexpression of the NKG2A inhibitory receptor. This study aims to determine the effect of Monalizumab, an anti- NKG2A receptor, on the effector functions of reconstituting NK cells after allo-HSCT.
Method: In this prospective cohort study, 18 patients with hematological malignancies were divided into three groups: dose 1 group (0.1 mg/kg, n = 5), dose 2 group (0.5 mg/kg, n = 8), and dose 3 group (1 mg/kg, n = 5), and followed up for six months. Blood samples were taken directly before the administration of Monalizumab and at different time points post-treatment. Reconstituting NK cells were phenotypically and functionally assessed by flow cytometry.
Results: Our results showed a more pronounced increase in the expression of activating NK receptors (NKG2D, NKp30, NKp46) on the reconstituting CD56dim NK cells of patients receiving 1 mg/kg of Monalizumab compared with other participants. Additionally, we observed that patients treated with dose 3 of Monalizumab had the highest levels of degranulation compared with other patients and controls. Moreover, we noticed that CD56dim NK cells of dose 2- and dose 3-related patients produced significant levels of perforin, interferon gamma (IFN-γ), and tumor necrosis factor alpha (TNF-α) in response to K562 stimulation post-Monalizumab treatment compared with controls and dose 1-treated patients.
Conclusion: We suggest that using Monalizumab improves the phenotype and cytotoxicity of reconstituting NK cells after allo-HSCT.

Keywords

Main Subjects

How to cite this article:

Taha M, Fauriat C. Improvement of NK cell cytotoxicity in reconstituting NK cells after allogeneic stem cell transplantation by blocking NKG2A checkpoint. Middle East J Cancer. 2023;14(4):509-20. doi:10.30476/mejc.2023.97716.1876.

 

  1. Copelan EA, Chojecki A, Lazarus HM, Avalos BR. Allogeneic hematopoietic cell transplantation; the current renaissance. Blood Rev. 2019;34:34-44. doi:10.1016/j.blre.2018.11.001.
  2. Danylesko I, Shimoni A. Second malignancies after hematopoietic stem cell transplantation. Curr Treat Options Oncol. 2018;19(2):9. doi:10.1007/s11864-018-0528-y.
  3. Balassa K, Danby R, Rocha V. Haematopoietic stem cell transplants: principles and indications. Br J Hosp Med. 2019;80(1):33-9. doi:10.12968/hmed.2019.80.1.33.
  4. Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol. 2019;105(6):1319-29. doi:10.1002/JLB.MR0718-269R.
  5. Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol. 2019;16(5):430–41. doi:10.1038/s41423-019-0206-4.
  6. Cichocki F, Taras E, Chiuppesi F, Wagner JE, Blazar BR, Brunstein C, et al. Adaptive NK cell reconstitution is associated with better clinical outcomes. JCI Insight. 2019;4(2):e125553. doi:10.1172/jci.insight.125553.
  7. Minculescu L, Fischer-Nielsen A, Haastrup E, Ryder LP, Andersen NS, Schjoedt I, et al. Improved relapse-free survival in patients with high natural killer cell doses in grafts and during early immune reconstitution after allogeneic stem cell transplantation. Front Immunol. 2020;11:1068. doi: 10.3389/fimmu.2020.01068.
  8. Orrantia A, Terrén I, Astarloa-Pando G, González C, Uranga A, Mateos-Mazón JJ, et al. NK cell reconstitution after autologous hematopoietic stem cell transplantation: association between NK cell maturation stage and outcome in multiple myeloma. Front Immunol. 2021;12:748207. doi: 10.3389/fimmu.2021.748207.
  9. Shereck E, Day NS, Awasthi A, Ayello J, Chu Y, McGuinn C, et al. Immunophenotypic, cytotoxic, proteomic and genomic characterization of human cord blood vs. peripheral blood CD56Dim NK cells. Innate Immun. 2019;25(5):294–304. doi: 10.1177/1753425919846584.
  10. Wang RC, Mori S, Zhu X, Varela JC, Dickman D, Patel R, et al. Increased bone marrow CD56bright natural killer cells at 30 days after allogeneic stem cell transplantation associated with adverse patient outcome. Bone Marrow Transplant. 2019;54(6):924-7. doi:10.1038/s41409-018-0407-y.
  11. Li L, Chen H, Marin D, Xi Y, Miao Q, Lv J, et al. A novel immature natural killer cell subpopulation predicts relapse after cord blood transplantation. Blood Adv. 2019;3(23):4117-30. doi: 10.1182/bloodadvances.2019000835.
  12. Pical-Izard C, Crocchiolo R, Granjeaud S, Kochbati E, Just-Landi S, Chabannon C, et al. Reconstitution of natural killer cells in HLA-matched HSCT after reduced-intensity conditioning: impact on clinical outcome. Biol Blood Marrow Transplant. 2015;21(3):429-39. doi:10.1016/j.bbmt.2014.11.681.
  13. Cichocki F, Grzywacz B, Miller JS. Human NK cell development: one road or many? Front Immunol. 2019;10:2078. doi: 10.3389/fimmu.2019.02078.
  14. Kumar S. Natural killer cell cytotoxicity and its regulation by inhibitory receptors. Immunology. 2018;154(3):383-93. doi:10.1111/imm.12921.
  15. Khan M, Arooj S, Wang H. NK cell-based immune checkpoint inhibition. Front Immunol. 2020;11:167. doi: 10.3389/fimmu.2020.00167.
  16. van Hall T, André P, Horowitz A, Ruan DF, Borst L, Zerbib R, et al. Monalizumab: inhibiting the novel immune checkpoint NKG2A. J Immunother Cancer. 2019;7(1):263. doi:10.1186/s40425-019-0761-3.
  17. Kamiya T, Seow SV, Wong D, Robinson M, Campana D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J Clin Invest. 2019;129(5):2094-106. doi: 10.1172/JCI123955.
  18. Ruggeri L, Urbani E, André P, Mancusi A, Tosti A, Topini F, et al. Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells. Haematologica. 2016;101(5):626-33. doi: 10.3324/haematol.2015.135301.
  19. André P, Denis C, Soulas C, Bourbon-Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell. 2018;175(7):1731-43.e13. doi: 10.1016/j.cell.2018.10.014.
  20. Ogonek J, Kralj Juric M, Ghimire S, Varanasi PR, Holler E, Greinix H, et al. Immune reconstitution after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2016;7:507. doi:10.3389/fimmu.2016.00507.
  21. Roberto A, Di Vito C, Zaghi E, Mazza EMC, Capucetti A, Calvi M, et al. The early expansion of anergic NKG2Apos/CD56dim/CD16neg natural killer represents a therapeutic target in haploidentical hematopoietic stem cell transplantation. Haematologica. 2018;103(8):1390-402. doi:10.3324/haematol.2017.186619.
  22. Russo A, Oliveira G, Berglund S, Greco R, Gambacorta V, Cieri N, et al. NK cell recovery after haploidentical HSCT with posttransplant cyclophosphamide: dynamics and clinical implications. Blood. 2018;131(2):247-62. doi:10.1182/blood-2017-05-780668.
  23. Chu J, Gao F, Yan M, Zhao S, Yan Z, Shi B, et al. Natural killer cells: a promising immunotherapy for cancer. J Transl Med. 2022;20(1):240. doi:10.1186/s12967-022-03437-0.
  24. Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021;18(2):85-100. doi:10.1038/s41571-020-0426-7.
  25. Shin MH, Kim J, Lim SA, Kim J, Kim SJ, Lee KM. NK cell-based immunotherapies in cancer. Immune Netw. 2020;20(2):e14. doi: 10.4110/in.2020.20.e14.
  26. Boyiadzis M, Agha M, Redner RL, Sehgal A, Im A, Hou JZ, et al. Phase 1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia. Cytotherapy. 2017;19(10):1225-32. doi:10.1016/j.jcyt.2017.07.008.
  27. Ciurea SO, Schafer JR, Bassett R, Denman CJ, Cao K, Willis D, ET AL. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood. 2017;130(16):1857-68. doi: 10.1182/blood-2017-05-785659. Erratum in: Blood. 2018;132(26):2782.
  28. Dulphy N, Haas P, Busson M, Belhadj S, Latour RP de, Robin M, et al. An unusual CD56brightCD16low NK cell subset dominates the early posttransplant period following HLA-matched hematopoietic stem cell transplantation. J Immunol. 2008;181(3):2227-37. doi:10.4049/jimmunol.181.3.2227.
  29. Nguyen S, Dhedin N, Vernant JP, Kuentz M, Jijakli AA, Rouas-Freiss N, et al. NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood. 2005;105(10):4135-42. doi: 10.1182/blood-2004-10-4113.
  30. Ghasemzadeh M, Hosseini E, Schwarer AP, Pourfathollah AA. NK cell maturation to CD56dim subset associated with high levels of NCRs overrides the inhibitory effect of NKG2A and recovers impaired NK cell cytolytic potential after allogeneic hematopoietic stem cell transplantation. Leuk Res. 2016;43:58-65. doi:10.1016/j.leukres.2015.12.002.
  31. Khaznadar Z, Boissel N, Agaugué S, Henry G, Cheok M, Vignon M, et al. Defective NK cells in acute myeloid leukemia patients at diagnosis are associated with blast transcriptional signatures of immune evasion. J Immunol. 2015;195(6):2580-90. doi:10.4049/jimmunol.1500262.
  32. Stringaris K, Sekine T, Khoder A, Alsuliman A, Razzaghi B, Sargeant R, et al. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica. 2014;99(5):836-47. doi: 10.3324/haematol.2013.087536.
  33. Wu J, Gao F, Wang C, Qin M, Han F, Xu T, et al. IL-6 and IL-8 secreted by tumour cells impair the function of NK cells via the STAT3 pathway in oesophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2019;38(1):321. doi:10.1186/s13046-019-1310-0.
  34. Ge Z, Wu S, Zhang Z, Ding S. Mechanism of tumor cells escaping from immune surveillance of NK cells. Immunopharmacol Immunotoxicol. 2020;42(3):187-98. doi:10.1080/08923973.2020.1742733.
  35. Foley B, Felices M, Cichocki F, Cooley S, Verneris MR, Miller JS. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT). Immunol Rev. 2014;258(1):45-63. doi:10.1111/imr.12157.
  36. Tinker AV, Hirte HW, Provencher D, Butler M, Ritter H, Tu D, et al. Dose-ranging and cohort-expansion study of Monalizumab (IPH2201) in patients with advanced gynecologic malignancies: a trial of the Canadian Cancer Trials Group (CCTG): IND221. Clin Cancer Res. 2019;25(20):6052-60. doi: 10.1158/1078-0432.CCR-19-0298.
  37. Sola C, Arnoux T, Chanuc F, Fuseri N, Rossi B, Gauthier L, et al. Abstract 2342: NKG2A immune checkpoint blockade enhances the anti-tumor efficacy of PD1/PD-L1 inhibitors in a preclinical model. Cancer Res. 2016;76(14_Supplement):2342. doi: 10.1158/1538-7445.AM2016-2342.
  38. Hervieu A, Rébé C, Végran F, Chalmin F, Bruchard M, Vabres P, et al. Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth. J Invest Dermatol. 2013;133(2):499-508. doi:10.1038/jid.2012.273.
  39. Sanchez-Correa B, Bergua JM, Pera A, Campos C, Arcos MJ, Bañas H, et al. In vitro culture with Interleukin-15 leads to expression of activating receptors and recovery of natural killer cell function in acute myeloid leukemia patients. Front Immunol. 2017;8:931. doi: 10.3389/fimmu.2017.00931.