Document Type : Original Article(s)


1 Department of Pathology, School of Medicine, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

3 Ariagene Medical Genetic Laboratory, Isfahan, Iran


Background: Glioblastoma, not otherwise specified (NOS), is the most common primary malignant brain tumor. The TRAF3IP2 gene is an upstream regulator responsible for activating multiple proinflammatory pathways that could influence tumor size, angiogenesis, aggressiveness, and metastasis. In the present study, we aimed to investigate and assess the TRAF3IP2 gene expression in brain tumor tissue of patients with glioblastoma, NOS and compare it with non-neoplastic brain tissue.
Method: In this case-control study, biopsies were obtained from 15 surgically glioblastoma, NOS removed block samples and 15 non-neoplastic brain tissue samples containing normal white and gray matter as controls. Ribonucleic acid (RNA) was isolated and reverse-transcribed to complementary DNA (cDNA). Quantitative polymerase chain reaction (qPCR) was then carried out to measure TRAF3IP2 gene expression.
Results: We evaluated data from 30 cases, divided into two groups: case (N = 15) and control (N = 15). Based on our data, the expression of the TRAF3IP2 gene was 6.95 ± 0.65 times higher in glioblastoma multiforme tissue compared with controls (P < 0.05). We also found no significant difference in TRAF3IP2 gene expression between genders (P = 0.452), and there was no significant correlation between TRAF3IP2 gene expression and age (P = 0.745).
Conclusion: The expression of the TRAF3IP2 gene was almost seven times higher in glioblastoma, NOS brain tissue compared with normal brain samples. This finding could have significant clinical and therapeutic implications.


Parvin Mahzouni (Google Scholar)


Main Subjects

How to cite this article:

Mahzouni P, Seddighin R, Mousaei Ghasroldasht M. Evaluation of TRAF3IP2 gene expression in brain tumor tissue of patients with glioblastoma multiforme in comparison to non-tumoral brain tissue. Middle East J Cancer. 2023;14(4):543-9. doi: 10.30476/mejc.2023.96063.1800.

  1. Alifieris C, Trafalis DT. Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther. 2015;152:63-82. doi: 10.1016/j.pharmthera.2015.05.005.
  2. Taylor OG, Brzozowski JS, Skelding KA. Glioblastoma multiforme: an overview of emerging therapeutic targets. Front Oncol. 2019;9:963. doi: 10.3389/fonc.2019.00963.
  3. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017;18(1):3-9. doi: 10.22034/APJCP.2017.18.1.3.
  4. Tamimi AF, Juweid M. Epidemiology and outcome of glioblastoma. In: De Vleeschouwer S, editor. Glioblastoma [Internet]. Brisbane (AU): Codon Publications; 2017 Sep 27. Chapter 8. PMID: 29251870.
  5. Burton E, Ugiliweneza B, Woo S, Skirboll S, Boaky M. A Surveillance, Epidemiology and End Results-Medicare data analysis of elderly patients with glioblastoma multiforme: treatment patterns, outcomes and cost. Mol Clin Oncol. 2015;3(5):971-8. doi: 10.3892/mco.2015.590.
  6. Elmaci I, Ozpinar A, Ozpinar A, Perez JL, Altinoz MA. From epidemiology and neurometabolism to treatment: vitamin D in pathogenesis of glioblastoma multiforme (GBM) and a proposal for vitamin D + all-trans retinoic acid + Temozolomide combination in treatment of GBM. Metab Brain Dis. 2019;34(3):687-704. doi: 10.1007/s11011-019-00412-5.
  7. Kanderi T, Gupta V. Glioblastoma multiforme. [Internet] StatPearls; 2021 [cited: 2022 09 12]. Available from:
  8. van Linde ME, Brahm CG, de Witt Hamer PC, Reijneveld JC, Bruynzeel AME, Vandertop WP, et al. Treatment outcome of patients with recurrent glioblastoma multiforme: a retrospective multicenter analysis. J Neurooncol. 2017;135(1):183-92. doi: 10.1007/s11060-017-2564-z.
  9. Yang J, Shi Z, Liu R, Wu Y, Zhang X. Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology. Theranostics. 2020;10(7):3223. doi: 10.7150/thno.40298.
  10. Stoyanov GS, Dzhenkov D, Ghenev P, Iliev B, Enchev Y, Tonchev AB. Cell biology of glioblastoma multiforme: from basic science to diagnosis and treatment. Med Oncol. 2018;35(3):27. doi: 10.1007/s12032-018-1083-x.
  11. Ening G, Osterheld F, Capper D, Schmieder K, Brenke C. Risk factors for glioblastoma therapy associated complications. Clin Neurol Neurosurg. 2015;134:55-9. doi: 10.1016/j.clineuro.2015.01.006.
  12. Bazan NG, Reid MM, Flores VAC, Gallo JE, Lewis W, Belayev L. Multiprong control of glioblastoma multiforme invasiveness: blockade of pro-inflammatory signaling, anti-angiogenesis, and homeostasis restoration. Cancer Metastasis Rev. 2021:1-5. doi: 10.1007/s10555-021-09987-x.
  13. Jiang G, Zhang L, Wang J, Zhou H. Baicalein induces the apoptosis of U251 glioblastoma cell lines via the NF-kB-p65-mediated mechanism. Anim Cells Syst. 2016;20(5):296-302. doi: 10.1007/s10555-021-09987-x.
  14. Somanna NK, Yariswamy M, Garagliano JM, Siebenlist U, Mummidi S, Valente AJ, et al. Aldosterone-induced cardiomyocyte growth, and fibroblast migration and proliferation are mediated by TRAF3IP2. Cell Signal. 2015;27(10):1928-38. doi: 10.1016/j.cellsig.2015.07.001.
  15. Colafrancesco S, Ciccacci C, Priori R, Latini A, Picarelli G, Arienzo F, et al. STAT4, TRAF3IP2, IL10, and HCP5 polymorphisms in Sjögren's syndrome: association with disease susceptibility and clinical aspects. J Immunol Res. 2019;2019:7682827. doi: 10.1155/2019/7682827.
  16. Song Y, Chen L, Li Y, Lin Q, Liu W, Zhang L. Knockdown of TRAF3IP2 suppresses the expression of VEGFA and the proliferation of keratinocytes and vascular endothelial cells. Heliyon. 2019;5(5):e01642. doi: 10.1016/j.heliyon.2019.e01642.
  17. Alt EU, Barabadi Z, Pfnür A, Ochoa JE, Daneshimehr F, Lang LM, et al. TRAF3IP2, a novel therapeutic target in glioblastoma multiforme. Oncotarget. 2018;9(51):29772. doi: 10.18632/oncotarget.25710.
  18. Komori T. Grading of adult diffuse gliomas according to the 2021 WHO Classification of Tumors of the Central Nervous System. Lab Invest. 2022;102(2):126-33. doi: 10.1038/s41374-021-00667-6.
  19. Mousaei Ghasroldasht M, Matin MM, Kazemi Mehrjerdi H, Naderi-Meshkin H, Moradi A, Rajabioun M, et al. Application of mesenchymal stem cells to enhance non-union bone fracture healing. J Biomed Mater Res A. 2019;107(2):301-11. doi: 10.1002/jbm.a.36441.
  20. Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. 2000;25(2):169-93. doi: 10.1677/jme.0.0250169.
  21. Silver DJ, Sinyuk M, Vogelbaum MA, Ahluwalia MS, Lathia JD. The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities. Neuro Oncol. 2016;18(2):153-9. doi: 10.1093/neuonc/nov157.
  22. Zan XY, Li L. Construction of lncRNA-mediated ceRNA network to reveal clinically relevant lncRNA biomarkers in glioblastomas. Oncol Lett. 2019;17(5):4369-74. doi: 10.3892/ol.2019.10114.
  23. Shao M, Liu W, Wang Y. Differentially expressed LncRNAs as potential prognostic biomarkers for glioblastoma. Cancer Genet. 2018;226-227:23-9. doi: 10.1016/j.cancergen.2018.05.001.
  24. Alt EU, Wörner PM, Pfnür A, Ochoa JE, Schächtele DJ, Barabadi Z, et al. Targeting TRAF3IP2, compared to Rab27, is more effective in suppressing the development and metastasis of breast cancer. Sci Rep. 2020;10(1):8834. doi: 10.1038/s41598-020-64781-z.
  25. Izadpanah A, Daneshimehr F, Willingham K, Barabadi Z, Braun SE, Dumont A, et al. Targeting TRAF3IP2 inhibits angiogenesis in glioblastoma. Front Oncol. 2022;12:893820. doi: 10.3389/fonc.2022.893820.
  26. Erikson JM, Valente AJ, Mummidi S, Kandikattu HK, DeMarco VG, Bender SB, et al. Targeting TRAF3IP2 by genetic and interventional approaches inhibits ischemia/reperfusion-induced myocardial injury and adverse remodeling. J Biol Chem. 2017;292(6):2345-58. doi: 10.1074/jbc.M116.764522.