Document Type : Original Article(s)

Authors

1 Digestive Surgery Division, Dr. Sardjito Central General Hospital, Yogyakarta, Indonesia

2 Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Indonesia

3 Dr. Sardjito Central General Hospital, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia

Abstract

Background: WHO has reported 34,189 (8.6%) colorectal carcinoma cases out of 396,914 total cancer cases in Indonesia. Accumulated gene mutation and the environment can affect cell regulation, growth, and differentiation, impacting the methylation of tumor suppressor genes. Carcinoembryonic antigen (CEA) is a biomarker used to detect the presence of colorectal carcinoma. Moreover, the E-cadherin gene has an essential role in tissue homeostasis, the adhesion between cells at embryogenesis, tissue morphogenesis, differentiation, and carcinogenesis stages. During instability and dysfunction in its regulation, the E-cadherin gene induces tumor progression. This study aimed to compare the level of CEA and E-cadherin expression in metastatic and non-metastatic sample groups.
Method: The present study is descriptive with a quantitative approach using ANOVA one-way, unpaired t-test, and Pearson correlation analysis for the measurement and comparison of the CEA level and relative gene expression value from the reverse transcription-quantitative polymerase chain reaction analysis.
Results: The obtained results suggested increasing CEA level and decreasing Ecadherin expression on the metastatic sample. Statistically, E-cadherin proven to show a negative r value or correlation value of CEA, even though it has a significant P-value. In other parameters, alanine transaminase and aspartate aminotransferase indicated a positive r-value and a significant P-value.
Conclusion: These findings indicated the potential clinical benefit of E-cadherin in detecting tumor progressivity, supported by other significant parameters, such as alanine transaminase and aspartate aminotransferase. Furthermore, E-cadherin was found beneficial in diagnosing the colorectal carcinoma with liver metastasis. Nonetheless, further research is needed to determine the role of E-cadherin regulation in colorectal cancer metastasis.

Highlights

Rianto Prabowo (PubMed)

Adeodatus Yuda Handaya (Google Scholar)

Keywords

How to cite this article:

Prabowo R, Susanto H, Setiawan N, Sofii I, Barmawi A, Handaya AY. Comparison of carcinoembryonic antigen level and E-cadherin expression between metastatic and nonmetastatic colorectal carcinoma in RSUP, Dr. Sardjito Yogyakarta-Indonesia. Middle East J Cancer. 2023;14(4):521- 9. doi: 10.30476/mejc.2023.94695.1737.

 

  1. Anthonysamy MA, Indrayani Maker LPL, Gotra IM, Saputra H. Prevalence of colorectal carcinoma based on microscopic type, sex, age and anatomical location in Sanglah General Hospital. Intisari Sains Medis. 2020;11(1):272-6.
  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660.
  3. Bardhan K, Liu K. Epigenetics and colorectal cancer pathogenesis. Cancers (Basel). 2013;5(2):676-713. doi: 10.3390/cancers5020676.
  4. Bardou M, Barkun AN, Martel M. Obesity and colorectal cancer. Gut. 2013;62(6):933-47. doi: 10.1136/gutjnl-2013-304701.
  5. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145-64. doi: 10.3322/caac.21601.
  6. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nat Rev Dis Primers. 2015;1:15065. doi: 10.1038/nrdp.2015.65.
  7. Saridaki Z, Souglakos J. Genetic alterations in colorectal cancer in older patients. In: Papamichael D, Audisio R, editors. Management of colorectal cancers in older people. Springer, London; 2013.p.9-20. doi: 10.1007/978-0-85729-984-0_2
  8. Andersen V, Vogel U. Interactions between meat intake and genetic variation in relation to colorectal cancer. Genes Nutr. 2015;10(1):448. doi: 10.1007/s12263-014-0448-9.
  9. Andersen V, Holst R, Kopp TI, Tjønneland A, Vogel U. Interactions between diet, lifestyle and IL10, IL1B, and PTGS2/COX-2 gene polymorphisms in relation to risk of colorectal cancer in a prospective Danish case-cohort study. PLoS One. 2013;8(10):e78366. doi: 10.1371/journal.pone.0078366.
  10. Hull R, Francies FZ, Oyomno M, Dlamini Z. Colorectal cancer genetics, incidence and risk factors: in search for targeted therapies. Cancer Manag Res. 2020;12:9869-82. doi: 10.2147/CMAR.S251223.
  11. Nadeem M. CEA levels in colorectal carcinoma, correlation with the tumor staging, and CEA as independent predictor of prognosis of colorectal cancers. International Journal of Medical Science and Innovative Research(IJMSIR). 2018;3(1):210-3.
  12. Agusrly C, Sungkar T, Siregar GA. Relationship between staging and carcinoembryonic antigen serum levels in colorectal cancer patients. J Endocrinol Trop Med Infect Dis. 2020;2(3):118–23. doi: 10.32734/jetromi.v2i3.3959.
  13. Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016;166(1):21-45. doi: 10.1016/j.cell.2016.06.028.
  14. Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol. 2020;13(6):100773. doi: 10.1016/j.tranon.2020.100773.
  15. Chiang C, Ayyanathan K. Characterization of the E-box binding affinity to snag-zinc finger proteins. Mol Biol (Mosk). 2012;46(6):907-14.
  16. Jen J, Wang YC. Zinc finger proteins in cancer progression. J Biomed Sci. 2016;23(1):53. doi: 10.1186/s12929-016-0269-9.
  17. Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, Dworecka-Kaszak B, Ngosa Toka F, Jurka P. Role of cadherins in cancer-a review. Int J Mol Sci. 2020;21(20):7624. doi: 10.3390/ijms21207624.
  18. Hu Y, Dai M, Zheng Y, Wu J, Yu B, Zhang H, et al. Epigenetic suppression of E-cadherin expression by Snail2 during the metastatic of colorectal cancer. Clin Epigenetics. 2018;10(1):154. doi: 10.1186/s13148-018-0592-y.
  19. Saito G, Sadahiro S, Kamata H, Miyakita H, Okada K, Tanaka A, et al. Monitoring of serum carcinoembryonic antigen levels after curative resection of colon cancer: cutoff values determined according to preoperative levels enhance the diagnostic accuracy for recurrence. Oncology. 2017;92(5):276-82. doi: 10.1159/000456075.
  20. Ramphal W, Boeding JRE, van Iwaarden M, Schreinemakers JMJ, Rutten HJT, Crolla RMPH, et al. Serum carcinoembryonic antigen to predict recurrence in the follow-up of patients with colorectal cancer. Int J Biol Markers. 2019;34(1):60-8. doi: 10.1177/1724600818820679.
  21. Su BB, Shi H, Wan J. Role of serum carcinoembryonic antigen in the detection of colorectal cancer before and after surgical resection. World J Gastroenterol. 2012;18(17):2121-6. doi: 10.3748/wjg.v18.i17.2121.
  22. Pavlopoulou A, Scorilas A. A comprehensive phylogenetic and structural analysis of the carcinoembryonic antigen (CEA) gene family. Genome Biol Evol. 2014;6(6):1314-26. doi: 10.1093/gbe/evu103.
  23. Siregar GA, Sibarani H. Comparison of Carcinoembryonic antigen levels among degree of differentiation and colorectal cancer's location in Medan. Open Access Maced J Med Sci. 2019;7(20):3447-50. doi: 10.3889/oamjms.2019.442.
  24. Na TY, Schecterson L, Mendonsa AM, Gumbiner BM. The functional activity of E-cadherin controls tumor cell metastatic at multiple steps. Proc Natl Acad Sci U S A. 2020;117(11):5931-7. doi: 10.1073/pnas.1918167117.
  25. Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastatic. Genes Dev. 2013;27(20):2192-206. doi: 10.1101/gad.225334.113.
  26. Wang K, Song K, Ma Z, Yao Y, Liu C, Yang J, et al. Identification of EMT-related high-risk stage II colorectal cancer and characterisation of metastatic-related genes. Br J Cancer. 2020;123(3):410-7. doi: 10.1038/s41416-020-0902-y.
  27. Theys J, Jutten B, Habets R, Paesmans K, Groot AJ, Lambin P, et al. E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiother Oncol. 2011;99(3):392-7. doi: 10.1016/j.radonc.2011.05.044.
  28. Sterneck E, Poria DK, Balamurugan K. Slug and E-cadherin: stealth accomplices? Front Mol Biosci. 2020;7:138. doi: 10.3389/fmolb.2020.00138.
  29. Aban CE, Lombardi A, Neiman G, Biani MC, La Greca A, Waisman A, et al. Downregulation of E-cadherin in pluripotent stem cells triggers partial EMT. Sci Rep. 2021;11(1):2048. doi: 10.1038/s41598-021-81735-1.
  30. Tian Y, Qi P, Niu Q, Hu X. Combined snail and E-cadherin Predicts overall survival of cervical carcinoma patients: comparison among various epithelial-mesenchymal transition proteins. Front Mol Biosci. 2020;7:22. doi: 10.3389/fmolb.2020.00022.
  31. Chow FC, Chok KS. Colorectal liver metastases: An update on multidisciplinary approach. World J Hepatol. 2019;11(2):150-72. doi: 10.4254/wjh.v11.i2.150.
  32. Liu WQ, Li WL, Ma SM, Liang L, Kou ZY, Yang J. Discovery of core gene families associated with liver metastatic in colorectal cancer and regulatory roles in tumor cell immune infiltration. Transl Oncol. 2021;14(3):101011. doi: 10.1016/j.tranon.2021.101011.
  33. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6-10. doi: 10.1016/j.metabol.2018.09.005.
  34. Salim BRK, Wihandani DM, Dewi NNA. Obesity as a risk factor for increased triglyceride levels in the blood: a review of the literature. Intisari Sains Medis. 2021;12(2):519-23.
  35. Younossi ZM, Henry L. Epidemiology of non-alcoholic fatty liver disease and hepatocellular carcinoma. JHEP Rep. 2021;3(4):100305. doi: 10.1016/j.jhepr.2021.100305.
  36. Zhang R, Xu GL, Li Y, He LJ, Chen LM, Wang GB, et al. The role of insulin-like growth factor 1 and its receptor in the formation and development of colorectal carcinoma. J Int Med Res. 2013;41(4):1228-35. doi: 10.1177/0300060513487631.
  37. Qiao C, Huang W, Chen J, Feng W, Zhang T, Wang Y, et al. IGF1-mediated HOXA13 overexpression promotes colorectal cancer metastatic through upregulating ACLY and IGF1R. Cell Death Dis. 2021;12(6):564. doi: 10.1038/s41419-021-03833-2.
  38. Chobot A, Górowska-Kowolik K, Sokołowska M, Jarosz-Chobot P. Obesity and diabetes-Not only a simple link between two epidemics. Diabetes Metab Res Rev. 2018;34(7):e3042. doi: 10.1002/dmrr.3042.
  39. Ye P, Xi Y, Huang Z, Xu P. Linking obesity with colorectal cancer: epidemiology and mechanistic insights. Cancers (Basel). 2020;12(6):1408. doi: 10.3390/cancers12061408.
  40. Jenkins DA, Bowden J, Robinson HA, Sattar N, Loos RJF, Rutter MK, et al. Adiposity-mortality relationships in type 2 diabetes, coronary heart disease, and cancer subgroups in the UK Biobank, and their modification by smoking. Diabetes Care. 2018;41(9):1878-86. doi: 10.2337/dc17-2508.
  41. Zhang X, Hu F, Li G, Li G, Yang X, Liu L, et al. Human colorectal cancer-derived mesenchymal stem cells promote colorectal cancer progression through IL-6/JAK2/STAT3 signaling. Cell Death Dis. 2018;9(2):25. doi: 10.1038/s41419-017-0176-3.