Document Type : Original Article(s)

Authors

1 Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt

2 Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt

3 Department of Animal Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt

4 Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt

Abstract

Background: Cancer is a disease in which molecular changes of the growth factors and relevant signaling cause uncontrolled growth and division of cells. The most common factors involved in cancer initiation and development include epidermal growth factor, mitogen-activated protein kinase, and autophagy effectors.
Method: This experimental study was conducted to investigate the potential anticancer properties of a number of agents, including interferon-gamma, rapamycin, and vitamin B17, which were compared to Sorafenib in hepatocellular carcinoma HepG2 cell line and stem cells. Cells were cultured in RPMI medium with 10% fetal bovine serum, 4 mM sodium pyruvate, 4 mM L-glutamine, and 100 U/mL penicillin/streptomycin. Cell viability and levels of lactate dehydrogenase were investigated for the cytotoxic potential of these agents in both kinds of cells. The expression profile of Raf-1, autophagy-related LC3B, TP53, caspase 3 (Casp3), and levels of released inflammatory cytokines, including IL-4 and IL-6, were monitored in response to the chemical treatment.
Results: Our findings showed insufficient inhibition of the indicated factors by interferon-gamma (IFN-γ) and rapamycin in cancer cells when compared to Sorafenib. Interestingly, vitamin B17 revealed competitive inhibition on cell proliferation of HepG2 cells compared with Sorafenib while in stem cells, vitamin B17 led to impartial consequences. Unlike TP53 and Casp3, gene expressions of Raf-1 and LC3B were significantly reduced in cancer cells treated with vitamin B17 at both RNA and protein levels, while their expression was markedly upregulated in the treated stem cells. Furthermore, in both cells, vitamin B17 increased the expression of IL-4 while reducing the production of IL-6.
Conclusion: These data provide evidence for the effectiveness of vitamin B17 in cancer treatment via selective regulation of Raf-1 and autophagy-related LC3B in cancer cells.

Highlights

Hany Khalil (Google Scholar)

Keywords

How to cite this article:

El- Hady AA, El-Chennawi FA, El-Fikiy B, El-Sayed I, Khalil H. Identification of the anticancer potential of vitamin B17 via targeting Raf-1 and autophagy-related gene expression. Middle East J Cancer. 2023;14(3):349-62. doi:10.30476/mejc.2022.93036.1673.

  1. Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers. 2017;9(5):52. doi: 10.3390/cancers9050052.
  2. Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12:9-18. doi:10.1038/sj.cr.7290105.
  3. Khalil H, Abd ElHady A, Elawdan KA, Mohamed D, Mohamed DD, Abd El Maksoud AI, et al. The mechanical autophagy as a part of cellular immunity; Facts and features in treating the medical disorders. Immunol Invest. 2022;51(2):266-89. doi: 10.1080/08820139.2020.1828453.
  4. Khalil H. The Intracellular signalling that associated with influenza a virus infection. Pediatr Infect Dis. 2017;1:38. doi:10.21767/2573-0282.100038.
  5. Sooro MA, Zhang N, Zhang P. Targeting EGFR-mediated autophagy as a potential strategy for cancer therapy. Int J Cancer. 2018;143(9):2116-25. doi: 10.1002/ijc.31398.
  6. Henson E, Chen Y, Gibson S. EGFR family members' regulation of autophagy is at a crossroads of cell survival and death in cancer. Cancers. 2017;9(4):27. doi: 10.3390/cancers9040027.
  7. Khalil H. Influenza A virus stimulates autophagy to undermine host cell IFN-β production. Egypt J Biochem Mol Biol. 2012;30:283-99.
  8. Barberán S, Cebrià F. The role of the EGFR signaling pathway in stem cell differentiation during planarian regeneration and homeostasis. Semin Cell Dev Biol. 2019;87:45-57. doi: 10.1016/j.semcdb.2018.05.011.
  9. Sobani ZA, Sawant A, Jafri M, Correa AK, Sahin IH. Oncogenic fingerprint of epidermal growth factor receptor pathway and emerging epidermal growth factor receptor blockade resistance in colorectal cancer. World J Clin Oncol. 2016;7(5):340-51. doi: 10.5306/wjco.v7.i5.340.
  10. Balcik-Ercin P, Cetin M, Yalim-Camci I, Uygur T, Yagci T. Hepatocellular carcinoma cells with downregulated ZEB2 become resistant to resveratrol by concomitant induction of ABCG2 expression. Mol Biol. 2020;54(1):87-94. doi: 10.31857/S0026898420010036.
  11. Taher RF, Al-Karmalawy AA, Abd El Maksoud AI, Khalil H, Hassan A, El-Khrisy E-DA, El-Kashak W. Two new flavonoids and anticancer activity of Hymenosporum flavum: in vitro and molecular docking studies. J Herbmed Pharmacol. 2021;10:443-58. doi: 10.34172/jhp.2021.52.
  12. Wykosky J, Fenton T, Furnari F, Cavenee WK. Therapeutic targeting of epidermal growth factor receptor in human cancer: successes and limitations. Chin J Cancer. 2011;30(1):5-12. doi: 10.5732/cjc.010.10542.
  13. Hamouda RA, Abd El Maksoud AI, Wageed M, Alotaibi AS, Elebeedy D, Khalil H, et al. Characterization and anticancer activity of biosynthesized Au/cellulose nanocomposite from chlorella vulgaris. Polymers. 2021;13(19):3340. doi: 10.3390/polym13193340.
  14. Ben Mousa A. Sorafenib in the treatment of advanced hepatocellular carcinoma. Saudi J Gastroenterol. 2008;14(1):40-2. doi: 10.4103/1319-3767.37808.
  15. Coriat R, Nicco C, Chéreau C, Mir O, Alexandre J, Ropert S, et al. Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo. Mol Cancer Ther. 2012;11(10):2284-93. doi: 10.1158/1535-7163.MCT-12-0093.
  16. Ni L, Lu J. Interferon gamma in cancer immunotherapy. Cancer Med. 2018;7(9):4509-16. doi: 10.1002/cam4.1700.
  17. Mukhopadhyay S, Frias MA, Chatterjee A, Yellen P, Foster DA. The enigma of rapamycin dosage. Mol Cancer Ther. 2016;15(3):347-53. doi: 10.1158/1535-7163.MCT-15-0720.
  18. Albogami S, Hassan A, Ahmed N, Alnefaie A, Alattas A, Alquthami L, et al. Evaluation of the effective dose of amygdalin for the improvement of antioxidant gene expression and suppression of oxidative damage in mice. PeerJ. 2020;8:e9232. doi: 10.7717/peerj.9232.
  19. Sireesha D, Reddy BS, Reginald BA, Samatha M, Kamal F. Effect of amygdalin on oral cancer cell line: An in vitro study. J Oral Maxillofac Pathol. 2019;23(1):104-7. doi: 10.4103/jomfp.JOMFP_281_18.
  20. Mohamed EA, Bassiouny K, Alshambky AA, Khalil H. Anticancer properties of N,N-dibenzylasparagine as an Asparagine (Asp) analog, using colon cancer Caco-2 cell linE. Asian Pac J Cancer Prev. 2022;23(7):2531-40. doi: 10.31557/APJCP.2022.23.7.2531.
  21. Belyavsky AV. Niches of hematopoietic stem cells in bone marrow.Mol Biol. 2019;53(6):1012-9. doi: 10.1134/S0026898419060028.
  22. Khalil H, Abd El Maksoud AI, Roshdey T, El-Masry S. Guava flavonoid glycosides prevent influenza A virus infection via rescue of P53 activity. J Med Virol. 2019;91(1):45-55. doi: 10.1002/jmv.25295.
  23. Khalil H, Arfa M, El-Masrey S, El-Sherbini SM, Abd-Elaziz AA. Single nucleotide polymorphisms of interleukins associated with hepatitis C virus infection in Egypt. J Infect Dev Ctries. 2017;11(3):261-8. doi: 10.3855/jidc.8127.
  24. Abd El Maksoud AI, Taher RF, Gaara AH, Abdelrazik E, Keshk OS, Elawdan KA,et al. Selective regulation of B-Raf dependent K-Ras/mitogen-activated protein by natural occurring multi-kinase inhibitors in cancer cells. Front Oncol. 2019;9:1220. doi: 10.3389/fonc.2019.01220.
  25. Farghaly H, Guirgis A, Khalil H. Heat shock reduces HCV replication via regulation of ribosomal L22 in Alu-RNA molecule dependent manner. Hepatoma Res. 2018;4:41. doi:10.20517/2394-5079.2018.30.
  26. Fekry T, Salem M, Abd-Elaziz A, Muawia S, Naguib Y, Khalil H. Anticancer properties of Selenium-Enriched oyster culinary-medicinal mushroom, Pleurotus ostreatus (Agaricomycetes), in colon cancer in vitro. Int J Med Mushrooms. 2022;24(11):1-20. doi:10.1615/intjmedmushrooms.2022045181.
  27. Maher E, Gedawy G, Fathy W, Farouk S, El Maksoud AA, Guirgis AA, et al. Hsa-miR-21-mediated cell death and tumor metastases: A potential dual response during colorectal cancer development. Middle East J Cancer. 2020;11(4): 483-92. doi: 10.30476/mejc.2020.83146.1139.
  28. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 2013;3(3):71-85.
  29. Wang R, Yin Z, Liu L, Gao W, Li W, Shu Y, et al. Second primary lung cancer after breast cancer: A population-based study of 6,269 women. Front Oncol. 2018;8:427. doi: 10.3389/fonc.2018.00427.
  30. Abd El Maksoud AI, Elebeedy D, Abass NH, Awad AM, Nasr GM, Roshdy T, et al. Methylomic changes of autophagy-related genes by legionella effector Lpg2936 in infected macrophages. Front Cell Dev Biol. 2020;7:390. doi: 10.3389/fcell.2019.00390.
  31. Elimam H, El-Say KM, Cybulsky AV, Khalil H. Regulation of autophagy progress via lysosomal depletion by fluvastatin nanoparticle treatment in breast cancer cells. ACS Omega. 2020;5(25):15476-86. doi: 10.1021/acsomega.0c01618.
  32. Youssef MM, Tolba MF, Badawy NN, Liu AW, El-Ahwany E, Khalifa AE, et al. Novel combination of sorafenib and biochanin-A synergistically enhances the anti-proliferative and pro-apoptotic effects on hepatocellular carcinoma cells. Sci Rep. 2016;6:30717. doi: 10.1038/srep30717.
  33. Kim JH, Hong SK, Wu PK, Richards AL, Jackson WT, Park JI. Raf/MEK/ERK can regulate cellular levels of LC3B and SQSTM1/p62 at expression levels. Exp Cell Res. 2014;327(2):340-52. doi: 10.1016/j.yexcr.2014.08.001.
  34. McCubrey JA, Steelman LS, Franklin RA, Abrams SL, Chappell WH, Wong EW, et al. Targeting the RAF/MEK/ERK, PI3K/AKT and p53 pathways in hematopoietic drug resistance. Adv Enzyme Regul. 2007;47:64-103. doi: 10.1016/j.advenzreg.2006.12.013.
  35. Khalil H, Abd ElHady A, Elawdan KA, Mohamed D, Mohamed DD, Abd El Maksoud AI, et al. The mechanical autophagy as a part of cellular immunity; facts and features in treating the medical disorders. Immunol Invest. 2022;51(2):266-89. doi: 10.1080/08820139.2020.1828453.
  36. Li Y, Kong D, Bao B, Ahmad A, Sarkar FH. Induction of cancer cell death by isoflavone: the role of multiple signaling pathways. Nutrients. 2011;3(10):877-96. doi: 10.3390/nu3100877.
  37. Masjedi A, Hashemi V, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Yousefi M, et al. The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed Pharmacother. 2018;108:1415-24. doi: 10.1016/j.biopha.2018.09.177.
  38. Zanotto-Filho A, Rajamanickam S, Loranc E, Masamsetti VP, Gorthi A, Romero JC, et al. Sorafenib improves alkylating therapy by blocking induced inflammation, invasion and angiogenesis in breast cancer cells. Cancer Lett. 2018;425:101-15. doi: 10.1016/j.canlet.2018.03.037.
  39. Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol. 2018;9:847. doi: 10.3389/fimmu.2018.00847.
  40. Jang M, Park R, Kim H, Namkoong S, Jo D, Huh YH, et al. AMPK contributes to autophagosome maturation and lysosomal fusion. Sci Rep. 2018;8(1):12637. doi: 10.1038/s41598-018-30977-7.
  41. Xie J, Wang X, Proud CG. mTOR inhibitors in cancer therapy. F1000Res. 2016;5:F1000 Faculty Rev-2078. doi: 10.12688/f1000research.9207.1.
  42. Makarević J, Rutz J, Juengel E, Kaulfuss S, Reiter M, Tsaur I, et al. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2. PLoS One. 2014;9(8):e105590. doi: 10.1371/journal.pone.0105590.
  43. Park HJ, Yoon SH, Han LS, Zheng LT, Jung KH, Uhm YK, et al. Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells. World J Gastroenterol. 2005;11(33):5156-61. doi: 10.3748/wjg.v11.i33.5156.
  44. Lee HM, Moon A. Amygdalin regulates apoptosis and adhesion in Hs578T triple-negative breast cancer cells. Biomol Ther. 2016;24(1):62-6. doi: 10.4062/biomolther.2015.172.
  45. Liczbiński P, Bukowska B. Molecular mechanism of amygdalin action in vitro: review of the latest research. Immunopharmacol Immunotoxicol. 2018;40(3):212-8. doi: 10.1080/08923973.2018.1441301.