Document Type : Original Article


1 Department of Molecular and Cellular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran

2 Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran


Background: Myocardial infarction-associated transcript (MIAT) is a long non-coding RNA (lncRNA), which functions in a variety of disorders, like myocardial infarction and diabetic retinopathy. Moreover, recent reports have established that MIAT is upregulated in several types of malignancies and plays a crucial role in tumorigenesis. Therefore, this research aimed to investigate the expression of MIAT in colorectal cancer (CRC) and further evaluate the impact of its knocking-down on the proliferation and migration of the CRC cell.
Method: In this case-control experimental study, we evaluated the expression level of MIAT in a series of CRC and marginal tissues using RT-qPCR. Furthermore, the role of MIAT was assessed employing RNA interference (RNAi)-mediated suppressing strategy in CRC-derived cells. Subsequently, colony formation, cell cycle analysis, migration, apoptosis, and senescence assays were done to decipher the influence of MIAT on initiation and progression of CRC.
Results: Our findings revealed that MIAT expression is significantly upregulated in high-grade and vascular invasion tumor tissues. Furthermore, MIAT silencing led to G1 arrest in SW116 and SW48 CRC-derived cells. We also found that MIAT inhibition contributed to the induction of apoptosis/cellular senescence as well as the limitation of colony formation capability and cell migration in CRC cells. The obtained findings also showed that MIAT silencing dysregulated the expression of ATM and CHK2 genes known as DNA damage responsive genes.  
Conclusion: The results of the present study demonstrated that lncRNA MIAT may control CRC cell proliferation and metastasis through regulating DNA damage-responsive pathway and can be noticed as a potential marker for diagnosis, prognosis, and targeted-therapy of high-grade CRC.


This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination, and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi:10.30476/mejc.2022.92233.1651

  1. Kong S, Tao M, Shen X, Ju S. Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products. Cancer Lett. 2020;483:59-65. doi: 10.1016/j.canlet.2020.04.006.
  2. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393-407. doi: 10.1016/j.cell.2018.01.011.
  3. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47-62. doi: 10.1038/nrg.2015.10.
  4. Castro-Oropeza R, Melendez-Zajgla J, Maldonado V, Vazquez-Santillan K. The emerging role of lncRNAs in the regulation of cancer stem cells. Cell Oncol (Dordr). 2018;41(6):585-603. doi: 10.1007/s13402-018-0406-4.
  5. Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 2006;51(12):1087-99. doi: 10.1007/s10038-006-0070-9.
  6. Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res. 2015;116(7):1143-56. doi: 10.1161/CIRCRESAHA.116.305510.
  7. Rao SQ, Hu HL, Ye N, Shen Y, Xu Q. Genetic variants in long non-coding RNA MIAT contribute to risk of paranoid schizophrenia in a Chinese Han population. Schizophr Res. 2015;166(1-3):125-30. doi: 10.1016/j.schres.2015.04.032.
  8. Alipoor FJ, Asadi MH, Torkzadeh‐Mahani M. MIAT lncRNA is overexpressed in breast cancer and its inhibition triggers senescence and G1 arrest in MCF7 cell line. J Cell Biochem. 2018;119(8):6470-81. doi: 10.1002/jcb.26678.
  9. Peng L, Chen Y, Ou Q, Wang X, Tang N. LncRNA MIAT correlates with immune infiltrates and drug reactions in hepatocellular carcinoma. Int Immunopharmacol. 2020;89:107071. doi: 10.1016/j.intimp.2020.107071.
  10. Zhang L, Ge S, Cao B. Long non-coding RNA MIAT promotes cervical cancer proliferation and migration. J Biochem. 2020;168(2):183-90. doi: 10.1093/jb/mvaa037.
  11. Zhou S, Xu A, Song T, Gao F, Sun H, Kong X. lncRNA MIAT regulates cell growth, migration, and invasion through sponging miR-150-5p in ovarian cancer. Cancer Biother Radiopharm. 2020;35(9):650-60. doi: 10.1089/cbr.2019.3259.
  12. Rafiee A, Riazi-Rad F, Havaskary M, Nuri F. Long noncoding RNAs: regulation, function and cancer. Cancer Biother Radiopharm. 2018;34(2):153-80. doi: 10.1080/02648725.2018.1471566.
  13. Sattari A, Siddiqui H, Moshiri F, Ngankeu A, Nakamura T, Kipps TJ, et al. Upregulation of long noncoding RNA MIAT in aggressive form of chronic lymphocytic leukemias. Oncotarget. 2016;7(34):54174. doi: 10.18632/oncotarget.11099.
  14. Zhang Z, Wang S, Liu W. EMT-related long non-coding RNA in hepatocellular carcinoma: A study with TCGA database. Biochem Biophys Res Commun. 2018;503(3):1530-6. doi: 10.1016/j.bbrc.2018.07.075.
  15. Luan T, Zhang X, Wang S, Song Y, Zhou S, Lin J, et al. Long non-coding RNA MIAT promotes breast cancer progression and functions as ceRNA to regulate DUSP7 expression by sponging miR-155-5p. Oncotarget. 2017;8(44):76153. doi: 10.18632/oncotarget.19190.
  16. Zhu L, Wang Y, Yang C, Li Y, Zheng Z, Wu L, et al. Long non-coding RNA MIAT promotes the growth of melanoma via targeting miR-150. Hum Cell. 2020;33(3):819-29. doi: 10.1007/s13577-020-00340-y.
  17. Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16(12):713-32. doi: 10.1038/s41575-019-0189-8.
  18. Kita Y, Yonemori K, Osako Y, Baba K, Mori S, Maemura K, et al. Noncoding RNA and colorectal cancer: its epigenetic role. J Hum Genet. 2017;62(1):41-7. doi: 10.1038/jhg.2016.66.
  19. Rokavec M, Horst D, Hermeking H. Cellular model of colon cancer progression reveals signatures of mRNAs, miRNA, lncRNAs, and epigenetic modifications associated with metastasis. Cancer Res. 2017;77(8):1854-67. doi: 10.1158/0008-5472.CAN-16-3236.
  20. Yu S, Da Wang YS, Zhang T, Xie H, Jiang X, Deng Q, et al. SP1-induced lncRNA TINCR overexpression contributes to colorectal cancer progression by sponging miR-7-5p. Aging. 2019;11(5):1389. doi: 10.18632/aging.101839.
  21. Ellis BC, Graham LD, Molloy PL. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim Biophys Acta Mol Cell Res. 2014;1843(2):372-86. doi: 10.1016/j.bbamcr.2013.10.016.
  22. Jiang H, Wang Y, Ai M, Wang H, Duan Z, Wang H, et al. Long noncoding RNA CRNDE stabilized by hnRNPUL2 accelerates cell proliferation and migration in colorectal carcinoma via activating Ras/MAPK signaling pathways. Cell Death Dis. 2017;8(6):e2862-e. doi: 10.1038/cddis.2017.258.
  23. Liu Z, Wang H, Cai H, Hong Y, Li Y, Su D, et al. Long non-coding RNA MIAT promotes growth and metastasis of colorectal cancer cells through regulation of miR-132/Derlin-1 pathway. Cancer Cell Int. 2018;18(1):1-10. doi: 10.1186/s12935-017-0477-8.
  24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. doi: 10.1006/meth.2001.1262.
  25. Keshavarz M, Asadi MH. Long non‐coding RNA ES 1 controls the proliferation of breast cancer cells by regulating the Oct4/Sox2/miR‐302 axis. FEBS J. 2019;286(13):2611-23. doi: 10.1111/febs.14825.
  26. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253-61. doi: 10.1038/nm.3981.
  27. Bazi Z, Bertacchi M, Abasi M, Mohammadi‐Yeganeh S, Soleimani M, Wagner N, et al. Rn7SK small nuclear RNA is involved in neuronal differentiation. J Cell Biochem. 2018;119(4):3174-82. doi: 10.1002/jcb.26472.
  28. Jafari-Oliayi A, Asadi MH. SNHG6 is upregulated in primary breast cancers and promotes cell cycle progression in breast cancer-derived cell lines. Cell Oncol. 2019;42(2):211-21. doi: 10.1007/s13402-019-00422-6.
  29. Sun C, Huang L, Li Z, Leng K, Xu Y, Jiang X, et al. Long non-coding RNA MIAT in development and disease: a new player in an old game. J Biomed Sci. 2018;25(1):1-7. doi: 10.1186/s12929-018-0427-3.
  30. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18(2):128-34. doi: 10.1038/nrc.2017.118.
  31. Jin H, Jin X, Chai W, Yin Z, Li Y, Dong F, et al. Long non‑coding RNA MIAT competitively binds miR‑150‑5p to regulate ZEB1 expression in osteosarcoma. Oncol Lett. 2019;17(1):1229-36. doi: 10.3892/ol.2018.9671.
  32. Manic G, Obrist F, Sistigu A, Vitale I. Trial watch: targeting ATM–CHK2 and ATR–CHK1 pathways for anticancer therapy. Mol Cell Oncol. 2015;2(4):e1012976. doi: 10.1080/23723556.2015.1012976.
  33. Molinaro C, Martoriati A, Cailliau K. Proteins from the DNA damage response: regulation, dysfunction, and anticancer strategies. Cancers. 2021;13(15):3819. doi: 10.3390/cancers13153819.
  34. Maillet H. Effects of prenatal stress and/or forebrain ATRX deficiency in C57BL/6 mice on cellular metabolism, DNA damage, ATM promoter methylation and gene expression [dissertation]. Halifax, Nova Scotia: Dalhousie University; 2021. 68p. Available from:
  35. Chen S, Zhou Q, Guo Z, Wang Y, Wang L, Liu X, et al. Inhibition of MELK produces potential anti‐tumour effects in bladder cancer by inducing G1/S cell cycle arrest via the ATM/CHK2/p53 pathway. J Cell Mol Med. 2020;24(2):1804-21. doi: 10.1111/jcmm.14878.
  36. Sharma S, Munger K. Expression of the long noncoding RNA DINO in human papillomavirus-positive cervical cancer cells reactivates the dormant TP53 tumor suppressor through ATM/CHK2 signaling. mBio. 2020;11(3):e01190-20. doi: 10.1128/mBio.01190-20.
  37. Zhang M, Qu J, Gao Z, Qi Q, Yin H, Zhu L, et al. Timosaponin AIII induces G2/M arrest and apoptosis in breast cancer by activating the ATM/Chk2 and p38 MAPK signaling pathways. Front Pharmacol. 2021;11:2288. doi: 10.3389/fphar.2020.601468.
  38. Xiaoli Y, Peng Y, Jing X, Yanfang F, Zheng J. Effect of ATM/CHK2/CDC25A Signal Pathway on the Resistance of Colorectal Cancer Cells to L-OHP. J Med Plant Res. 2021;12(3). doi: 10.19600/j.cnki.issn2152-3924.2021.03.018.