Document Type : Original Article


1 Section of Radiation Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia

2 Department of Clinical Oncology and Nuclear Medicine, Zagazig Medicine College, Egypt

3 Department of Biomedical Physics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia


Background: Dosimetric comparison between 3D-conformal radiation therapy (3D-CRT) and helical tomotherapy (HT) in pediatric Medulloblastoma (MB) receiving craniospinal irradiation (CSI).
Method: This was a retrospective dosimetric study on five pediatric male patients diagnosed as MB, who were planned to receive CSI post-surgery. Treatment plans for 3D-CRT and HT were generated. Comparison was made in terms of planning target volume (PTV) coverage, homogeneity index (HI), conformity index (CI), organs at risk (OAR) dose, and treatment time (TT).
Results: HT increased the minimum dose up to PTV (81% vs. 74%) with better CI and HI (1.024 vs. 0.36 and 1.078 vs. 1.21, respectively). HT decreased the mean and maximum dose to OAR, except for higher mean dose of larynx, oral cavity, pharynx, and comparable V5 of lungs. TT of 3D CRT was shorter than HT (76 seconds vs. 545 seconds).
Conclusion: HT was found to be a better treatment option in all the MB cases receiving CSI regarding PTV, conformity, homogeneity, and most of OAR, while TT was shorter in 3D-CRT plan.


How to cite this article:

Hegazy MW, Shehadeh M. Craniospinal irradiation of pediatric medulloblastoma, dosimetric comparison between helical tomotherapy, and conventional radiation therapy. Middle East J Cancer. 2022;13(4):701-7. doi: 10.3 0476/mejc.2022.88933.1502.

Ray A, Ho M, Ma J, Parkes RK, Mainprize TG, Ueda S, et al. A clinicobiological model predicting survival in medulloblastoma. Clin Cancer Res. 2004;10(22): 7613-20. doi: 10.1158/1078-0432.CCR-04-0499.
2. Kortmann RD, Kühl J, Timmermann B, Mittler U, Urban C, Budach Ü, et al. Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of the German prospective randomized trial HIT '91. Int J Radiat Oncol Biol Phys. 2000;46(2):269-79. doi: 10.1016/s0360-3016(99)00369-7.
3. Bouffet E, Gentet JC, Doz F, Tron P, Roche H, Plantaz D, et al. Metastatic medulloblastoma: the experience of the French Cooperative M7 Group. Eur J Cancer. 1994;30A(10):1478-83. doi: 10.1016/0959-8049 (94)00256-5.
4. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011;29(11):1408-14. doi: 10.1200/JCO. 2009.27.4324.
5. Jones DT, Jäger N, Kool M, Zichner T, Hutter B, Sultan M, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012;488(7409): 100-5. doi: 10.1038/nature11284.
6. Remke M, Hielscher T, Korshunov A, Northcott PA, Bender S, Kool M, et al. FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. J Clin Oncol. 2011;29(29):3852-61. doi: 10.1200/JCO. 2011.36.2798.
7. Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H, et alL. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol. 2011;29(11):1424-30. doi: 10.1200/JCO.2010.28.5148.
8. Packer RJ, Sutton LN, Elterman R, Lange B, Goldwein J, Nicholson HS, et al. Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J Neurosurg. 1994;81(5):690-8. doi: 10.3171/jns.1994.81.5.0690.
9. Packer RJ, Gajjar A, Vezina G, Adams LR, Burger PC, Robertson PL. et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol. 2006;24(25):4202-8. doi: 10.1200/JCO. 2006.06.4980.
10. Zeltzer PM, Boyett JM, Finlay JL, Albright AL, Rorke LB, Milstein JM, et al. Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children's Cancer Group 921 randomized phase III study. J Clin Oncol. 1999;17(3):832-45. doi: 10. 1200/JCO.1999.17.3.832.
11. Tarbell NJ, Friedman H, Polkinghorn WR, Yock T, Zhou T, Chen Z, et al. High-risk medulloblastoma: a pediatric oncology group randomized trial of chemotherapy before or after radiation therapy (POG 9031). J Clin Oncol. 2013;31(23):2936-41. doi: 10. 1200/JCO.2012.43.9984.
12. Merchant TE, Kun LE, Krasin MJ, Wallace D, Chintagumpala MM, Woo SY, et al. Multi-institution prospective trial of reduced-dose craniospinal irradiation (23.4 Gy) followed by conformal posterior fossa (36 Gy) and primary site irradiation (55.8 Gy) and dose-intensive chemotherapy for average-risk medulloblastoma. Int J Radiat Oncol Biol Phys. 2008;70(3):782-7. doi: 10.1016/j.ijrobp.2007.07.2342.
13. Wolden SL, Dunkel IJ, Souweidane MM, Happersett L, Khakoo Y, Schupak K, et al. Patterns of failure using a conformal radiation therapy tumor bed boost for medulloblastoma. J Clin Oncol. 2003;21(16):3079-83. doi: 10.1200/JCO.2003.11.140.
14. Mascarin M, Giugliano FM, Coassin E, Drigo A, Chiovati P, Dassie A, et al. Helical tomotherapy in children and adolescents: dosimetric comparisons, opportunities and issues. Cancers (Basel). 2011; 3(4):3972-90. doi: 10.3390/cancers3043972.
15. St Clair WH, Adams JA, Bues M, Fullerton BC, La Shell S, Kooy HM, et al. Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int J Radiat Oncol Biol Phys. 2004;58(3):727-34. doi: 10.1016/S0360-3016(03)01574-8.
16.Yuh GE, Loredo LN, Yonemoto LT, Bush DA, Shahnazi K, Preston W, et al. Reducing toxicity from craniospinal irradiation: using proton beams to treat medulloblastoma in young children. Cancer J. 2004;10(6):386-90. doi: 10.1097/00130404-200411000-00009.
17. Pai Panandiker A, Ning H, Likhacheva A, Ullman K, Arora B, Ondos J, et al. Craniospinal irradiation with spinal IMRT to improve target homogeneity. Int J Radiat Oncol Biol Phys. 2007;68(5):1402-9. doi: 10.1016/j.ijrobp.2007.02.037.
18.Parker W, Filion E, Roberge D, Freeman CR. Intensity-modulated radiotherapy for craniospinal irradiation: target volume considerations, dose constraints, and competing risks. Int J Radiat Oncol Biol Phys. 2007;69(1):251-7. doi: 10.1016/j.ijrobp.2007.04.052.
19. Myers P, Stathakis S, Gutiérrez A, Esquivel C, Mavroidis P, Papanikolaou N. Dosimetric comparison of craniospinal axis irradiation (CSI) treatments using helical tomotherapy, smartarcTM, and 3D conventional radiation therapy. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology (IJMPCERO). 2013,2(1):30-8. doi: 10.4236/ijmpcero. 2013.21005.
20. Sharma DS, Gupta T, Jalali R, Master Z, Phurailatpam RD, Sarin R. High-precision radiotherapy for craniospinal irradiation: evaluation of three-dimensional conformal radiotherapy, intensity-modulated radiation therapy and helical TomoTherapy. Br J Radiol. 2009;82(984):1000-9. doi: 10.1259/bjr/13776022.
21. Parker W, Brodeur M, Roberge D, Freeman C. Standard and nonstandard craniospinal radiotherapy using helical TomoTherapy. Int J Radiat Oncol Biol Phys. 2010; 77(3):926-31. doi: 10.1016/j.ijrobp.2009.09.020.
22. Sugie C, Shibamoto Y, Ayakawa S, Mimura M, Komai K, Ishii M, et al. Craniospinal irradiation using helical tomotherapy: evaluation of acute toxicity and dose distribution. Technol Cancer Res Treat. 2011;10(2):187-95. doi: 10.7785/tcrt.2012.500194.
23. Yoon M, Shin DH, Kim J, Kim JW, Kim DW, Park SY, et al. Craniospinal irradiation techniques: a dosimetric comparison of proton beams with standard and advanced photon radiotherapy. Int J Radiat Oncol Biol Phys. 2011;81(3):637-46. doi: 10.1016/j.ijrobp. 2010.06.039.
24. Mascarin M, Giugliano FM, Coassin E, Drigo A, Chiovati P, Dassie A, et al. Helical tomotherapy in children and adolescents: dosimetric comparisons, opportunities and issues. Cancers (Basel). 2011;3(4): 3972-90. doi: 10.3390/cancers3043972.