Document Type : Original Article(s)

Authors

Department of Clinical Biochemistry, Medicine School, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Background: Thymoquinone (TQ), an active part of Nigella sativa, has been reported as an anticancer agent. This study aimed to evaluate different anticancer effects of TQ on oxidative stress markers and Peroxiredoxin 4 (P4) in lung cancer A549 cell line.
Method: In this experimental study, we used TQ concentrations to treat lung A549 cells and determined cell viability by the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay at 12, 24, and 48 h times. The IC50 concentration of TQ was found with MTT assay. We studied the total antioxidant capacity (TAC) and total oxidant status (TOS) using the manual assay, and analyzed catalase (CAT), superoxide dismutases (SOD), and glutathione peroxidase (GPx) activity using the enzyme-linked immunoassay (ELISA) kits. Moreover, the concentration of peroxiredoxin-4 (PRXD4) was measured with the ELISA Kit.
Results: The IC50 of TQ for A549 cells was calculated to be 40 μM concentration for 24 h of incubation. TAC index significantly decreased in the treated cells compared with the controls (P = 0.05), whereas TOS and PRXD4 levels showed a significant increase (P = 0.05). Additionally, the results showed that the CAT, SOD, and GPX activity enzymes significantly decreased in 20, 40, and 60 μM TQ in comparison with the control cells (P = 0.05).
Conclusion: TQ has significant inhibitory effects on A549 cells and could be utilized in novel therapy not only for lung cancer, but also for other tumors.

Keywords

How to cite this article:

Farsiabi R, Khodadadi I, Karimi J, Shafiee G. Evaluation of the effects of thymoquinone on oxidative stress in A549 lung cancer cell line. Middle East J Cancer. 2023;14(2):231-40. doi: 10.30476/mejc.2021.92306.1653.

  1. Aybastyer O, Dawbaa S, Demir C, Akgun O, Ulukaya E, Ary F. Quantification of DNA damage products by gas chromatography tandem mass spectrometry in lung cell lines and prevention effect of thyme antioxidants on oxidative induced DNA damage. Mutat Res. 2018;808:1-9. doi: 10.1016/j.mrfmmm.2018.01.004.
  2. Chan DC, Earle KA, Zhao TL, Helfrich B, Zeng C, Baron A, et al. Exisulind in combination with docetaxel inhibits growth and metastasis of human lung cancer and prolongs survival in athymic nude rats with orthotopic lung tumors. Clin Cancer Res. 2002;8(3):904-12.
  3. Samarghandian S, Azimi-Nezhad M, Farkhondeh T. Thymoquinone-induced antitumor and apoptosis in human lung adenocarcinoma cells. J Cell Physiol. 2019;234(7):10421-31. doi: 10.1002/jcp. 27710.
  4. Jrah-Harzallah H, Ben-Hadj-Khalifa S, Almawi WY, Maaloul A, Houas Z, Mahjoub T. Effect of thymoquinone on 1,2-dimethyl-hydrazine-induced oxidative stress during initiation and promotion of colon carcinogenesis. Eur J Cancer. 2013;49(5): 1127-35. doi: 10.1016/j.ejca.2012.10.007.
  5. Quinonez-Flores CM, Gonzalez-Chavez SA, Del Rio Najera D, Pacheco-Tena C. Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: A systematic review. Biomed Res Int. 2016;2016:6097417. doi: 10.1155/2016/6097417.
  6. Cockfield JA, Schafer ZT. Antioxidant defenses: A context-specific vulnerability of cancer cells. Cancers. 2019;11(8):1208. doi.org/10.3390/cancers11081208.
  7. Sun Q, Lu NN, Feng L. Apigetrin inhibits gastric cancer progression through inducing apoptosis and regulating ROS-modulated STAT3/JAK2 pathway. Biochem Biophys Res Commun. 2018;498(1):164-70. doi: 10.1016/j.bbrc.2018.02.009.
  8. He H, Zhuo R, Dai J, Wang X, Huang X, Wang H, et al. Chelerythrine induces apoptosis via ROS-mediated endoplasmic reticulum stress and STAT3 pathways in human renal cell carcinoma. J Cell Mol Med. 2020;24(1):50-60. doi: 10.1111/jcmm.14295.
  9. Chae IG, Kim DH, Kundu J, Jeong CH, Kundu JK, Chun KS. Generation of ROS by CAY10598 leads to inactivation of STAT3 signaling and induction of apoptosis in human colon cancer HCT116 cells. Free Radic Res. 2014;48(11):1311-21. doi:10.3109/10715762.2014.951838.
  10. Miao Z, Yu F, Ren Y, Yang J. d,l-Sulforaphane induces ROS-dependent apoptosis in human gliomablastoma cells by inactivating STAT3 signaling pathway. Int J Mol Sci. 2017;18(1):72. doi: 10.3390/ijms18010072.
  11. Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017;387:95-105. doi: 10.1016/j.canlet.2016.03.042.
  12. Backos DS, Franklin CC, Reigan P. The role of glutathione in brain tumor drug resistance. Biochem Pharmacol. 2012;83(8):1005-12. doi:10.1016/j.bcp.2011.11.016.
  13. Mishra M, Jiang H, Wu L, Chawsheen HA, Wei Q. The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development. Cancer Lett. 2015;366(2):150-9. doi: 10.1016/j.canlet. 2015.07.002.
  14. Arab Sadeghabadi Z, Abbasalipourkabir R, Mohseni R, Ziamajidi N. Investigation of oxidative stress markers and antioxidant enzymes activity in newly diagnosed type 2 diabetes patients and healthy subjects, association with IL-6 level. J Diabetes Metab Disord. 2019;18(2):437-43. doi: 10.1007/s40200-019-00437-8.
  15. Gali-Muhtasib H, Roessner A, Schneider-Stock R. Thymoquinone: a promising anti-cancer drug from natural sources. Int J Biochem Cell Biol. 2006;38(8):1249-53. doi: 10.1016/j.biocel.2005.10.009.
  16. Ulasli SS, Celik S, Gunay E, Ozdemir M, Hazman O, Ozyurek A, et al. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pac J Cancer Prev. 2013;14(10):6159-64. doi: 10.7314/apjcp.2013.14.10.6159.
  17. Shafiee G, Saidijam M, Tayebinia H, Khodadadi I. Beneficial effects of genistein in suppression of proliferation, inhibition of metastasis, and induction of apoptosis in PC3 prostate cancer cells. Arch Physiol Biochem. 2020:1-9. doi: 10.1080/13813455.2020.1717541.
  18. Shafiee G, Saidijam M, Tavilani H, Ghasemkhani N, Khodadadi I. Genistein induces apoptosis and inhibits proliferation of HT29 colon cancer cells. Int J Mol Cell Med. 2016;5(3):178-91.
  19. Benzie IF, Szeto YT. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem. 1999;47(2):633-6. doi:10.1021/jf9807768.
  20. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103-11. doi: 10.1016/j.clinbiochem.2005.08.008.
  21. Hadwan MH, Abed HN. Data supporting the spectrophotometric method for the estimation of catalase activity. Data Brief. 2015;6:194-9. doi:10.1016/j.dib.2015.12.012.
  22. Bahmani M, Ziamajidi N, Hashemnia M, Abbasalipourkabir R, Salehzadeh A. Human umbilical cord blood mesenchymal stem cell conditioned medium (hMSC-CM) improves antioxidant status in carbon tetrachloride-induced oxidative damage in rat. Iran J Sci Technol Trans Sci. 2020;44(5):1327-35.doi:10.1007/s40995-020-00944-x.
  23. Şen V, Bozkurt M, Soker S, Ece A, Guneş A, Uluca U, et al. The effects of pomegranate and carvacrol on methotrexate-induced bone marrow toxicity in rats. Clin Invest Med. 2014;37(2):E93-E101. doi:10.25011/cim.v37i2.21091.
  24. Liou YF, Chen PN, Chu SC, Kao SH, Chang YZ, Hsieh YS, et al. Thymoquinone suppresses the proliferation of renal cell carcinoma cells via reactive oxygen species-induced apoptosis and reduces cell stemness. Environ Toxicol. 2019;34(11):1208-20. doi:10.1002/tox.22822.
  25. Park JE, Kim DH, Ha E, Choi SM, Choi JS, Chun KS, et al. Thymoquinone induces apoptosis of human epidermoid carcinoma A431 cells through ROSmediated suppression of STAT3. Chem Biol Interact. 2019;312:108799. doi: 10.1016/j.cbi.2019.108799.
  26. Meral I, Pala M, Akbas F, Ustunova S, Yildiz C, Demirel MH. Effects of thymoquinone on liver miRNAs and oxidative stress in Ehrlich acid mouse solid tumor model. Biotech Histochem. 2018;93(4):301-8. doi: 10.1080/10520295.2018.1437472.
  27. Rezaei N, Sardarzadeh T, Sisakhtnezhad S. Thymoquinone promotes mouse mesenchymal stem cells migration in vitro and induces their immunogenicity in vivo. Toxicol Appl Pharmacol. 2020;387:114851. doi: 10.1016/j.taap.2019.114851.
  28. Krylova NG, Drobysh MS, Semenkova GN, Kulahava TA, Pinchuk SV, Shadyro OI. Cytotoxic and antiproliferative effects of thymoquinone on rat C6 glioma cells depend on oxidative stress. Mol Cell Biochem. 2019;462(1-2):195-206. doi: 10.1007/s11010-019-03622-8.
  29. Bouhlel A, Bejaoui M, Ben Mosbah I, Hadj Abdallah N, Ribault C, Viel R, eta al. Thymoquinone protects rat liver after partial hepatectomy under ischaemia/reperfusion through oxidative stress and endoplasmic reticulum stress prevention. Clin Exp Pharmacol Physiol. 2018. doi: 10.1111/1440-1681.12961.
  30. Fujii J, Ikeda Y. Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep. 2002;7(3):123-30. doi:10.1179/135100002125000352.
  31. Badary OA, AlShabanah OA, Nagi MN, Al-Bekairi AM, Elmazar M. Acute and subchronic toxicity of thymoquinone in mice. Drug Development Research. 1998;44(2-3):56-61. doi.org/10.1002/(SICI)1098-2299(199806/07)44:2/3<56::AID-DDR2>3.0.CO;2-9.
  32. Rooney S, Ryan MF. Modes of action of alpha-hederin and thymoquinone, active constituents of Nigella sativa, against HEp-2 cancer cells. Anticancer Res. 2005;25(6B):4255-9.
  33. El-Najjar N, Chatila M, Moukadem H, Vuorela H, Ocker M, Gandesiri M, et al. Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis. 2010;15(2):183-95. doi: 10.1007/s10495-009-0421-z.
  34. Ashour AE, Abd-Allah AR, Korashy HM, Attia SM, Alzahrani AZ, Saquib Q, et al. Thymoquinone suppression of the human hepatocellular carcinoma cell growth involves inhibition of IL-8 expression, elevated levels of TRAIL receptors, oxidative stress and apoptosis. Mol Cell Biochem. 2014;389(1-2):85-98. doi: 10.1007/s11010-013-1930-1.