Document Type : Original Article

Authors

Department of Radiation Oncology, Faculty of Medicine, Selcuk University, Konya, Turkey

Abstract

Background: The present dosimetric study aimed to evaluate the dosimetric benefits of using three-dimensional conformal radiotherapy (3D-CRT), dynamic intensity-modulated radiation therapy (D-IMRT), and Hybrid CRT/IMRT plans.
Method: In this dosimetric research, 10 patients with locally advanced lung cancer (Stage-IIIB) were selected. The patients with centrally located tumors were particularly chosen to underline the complexity of the treatment plans. We performed 3D-CRT, D-IMRT, and Hybrid CRT/IMRT treatment plans using Varian with the Eclipse treatment planning system. The treatment plans were compared with respect to the doses received by the organs at risk, including total lungs, contralateral lung, ipsilateral lung, heart, spinal cord, esophagus, the dose homogeneity index, and conformity indexes. Paired samples t-test was performed for statistical analyses.
Results: Hybrid method significantly advanced the target conformity index when compared with 3D-CRT and D-IMRT methods (P = 0.000). The total lung volume receiving 5 to 10 Gy was significantly lower in the 3D-CRT plans compared with that in D-IMRT and Hybrid plans (P = 0.025 and P = 0.003). V20 of the total lung was significantly lower in Hybrid plans (P =0.036). The average mean doses to heart in all the plans were similar with no significant differences. There was a statistically significant difference concerning the maximum doses for spinal cord, when D-IMRT plans were compared with 3D-CRT and Hybrid (P = 0.000).
Conclusion: Hybrid technique could be highly conducive to the treatment, while 3D-CRT and D-IMRT techniques are not adequate alone for maintaining the spinal cord, heart, and esophagus in the treatment of LALC patients.

Keywords

How to cite this article:

Basaran H, Inan G, Gul OV, Duzova M. Dosimetric comparison of threedimensional conformal radiotherapy, dynamic intensity modulated radiation therapy, and hybrid planning for treatment of locally advanced lung cancer. Middle East J Cancer. 2022;13(3):523-30. doi:10.30476/mejc.2021.90142.1566.

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. doi: 10.3322/caac.21551.
  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492. Erratum in: CA Cancer J Clin. 2020;70(4):313.
  3. Bernard Stewart W, Christoper Wild P. International Agency for Research on Cancer, Geneva, Switzerland : Distributed by WHO Press, World Health Organization, World Cancer Report 2014. IARC Press ; 2014 : p. 350 – 352.
  4. Sibley GS, Jamieson TA, Marks LB, Anscher MS, Prosnitz LR. Radiotherapy alone for medically inoperable stage I non-small-cell lung cancer: the Duke experience. Int J Radiat Oncol Biol Phys. 1998;40(1):149-54. doi: 10.1016/s0360-3016(97)00589-0.
  5. Silva SR, Surucu M, Steber J, Harkenrider MM, Choi M. Clinical application of a hybrid rapidarc radiotherapy technique for locally advanced lung cancer. Technol Cancer Res Treat. 2017;16(2):224-30. doi: 10.1177/1533034616670273.
  6. Intensity Modulated Radiation Therapy Collaborative Working Group. Intensity modulated radiation therapy: current status and issues of interest. Int J Radiat Oncol Biol Phys. 2001;51(4):880-914. doi: 10.1016/s0360-3016(01)01749-7.
  7. Paximadis P, Schipper M, Matuszak M, Feng M, Jolly S, Boike T, et al. Dosimetric predictors for acute esophagitis during radiation therapy for lung cancer: Results of a large statewide observational study. Pract Radiat Oncol. 2018;8(3):167-73. doi: 10.1016/j.prro.2017.07.010.
  8. Palma DA, Senan S, Oberije C, Belderbos J, de Dios NR, Bradley JD, et al. Predicting esophagitis after chemoradiation therapy for non-small cell lung cancer: an individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2013;87(4):690-6. doi: 10.1016/j.ijrobp.2013.07.029.
  9. Allen AM, Czerminska M, Jänne PA, Sugarbaker DJ, Bueno R, Harris JR, et al. Fatal pneumonitis associated with intensity-modulated radiation therapy for mesothelioma. Int J Radiat Oncol Biol Phys. 2006;65(3):640-5. doi: 10.1016/j.ijrobp.2006.03.012.
  10. Pinnix CC, Smith GL, Milgrom S, Osborne EM, Reddy JP, Akhtari M, et al. Predictors of radiation pneumonitis in patients receiving intensity modulated radiation therapy for Hodgkin and non-Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2015;92(1):175-82. doi: 10.1016/j.ijrobp.2015.02.010.
  11. Palma DA, Senan S, Tsujino K, Barriger RB, Rengan R, Moreno M, et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2013;85(2):444-50. doi: 10.1016/j.ijrobp.2012.04.043.
  12. Blom GJ, Verbakel WF, Dahele M, Hoffmans D, Slotman BJ, Senan S. Improving radiotherapy planning for large volume lung cancer: a dosimetric comparison between hybrid-IMRT and RapidArc. Acta Oncol. 2015;54(3):427-32. doi: 10.3109/0284186X.2014.963888.
  13. Mayo CS, Urie MM, Fitzgerald TJ, Ding L, Lo YC, Bogdanov M. Hybrid IMRT for treatment of cancers of the lung and esophagus. Int J Radiat Oncol Biol Phys. 2008;71(5):1408-18. doi: 10.1016/j.ijrobp.2007.12.008.
  14. Kong FM, Ritter T, Quint DJ, Senan S, Gaspar LE, Komaki RU, et al. Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int J Radiat Oncol Biol Phys. 2011;81(5):1442-57. doi: 10.1016/j.ijrobp.2010.07.1977.
  15. ICRU: Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT). ICRU Report 83, J. ICRU, 2010, Volume 10(1). University Press: Oxford, UK.
  16. Wu Q, Mohan R, Morris M, Lauve A, Schmidt-Ullrich R. Simultaneous integrated boost intensity modulated radiotherapy for locally advanced head and neck squamous cell carcinomas. Dosimetric results. Int J Radiat Oncol Biol Phys. 2003;56:573-85. doi: 10.1016/s0360-3016(02)04617-5.
  17. Halperin EC, Wazer DE, Perez CA, et al. Perez and Brady’s principles and practice of radiation oncology. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2018. p. 3608-3609.
  18. Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 1999;45(2):323-9. doi: 10.1016/s0360-3016(99)00183-2.
  19. Kwa SL, Lebesque JV, Theuws JC, Marks LB, Munley MT, Bentel G, et al. Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys. 1998;42(1):1-9. doi: 10.1016/s0360-3016(98)00196-5.
  20. Allen AM, Czerminska M, Jänne PA, Sugarbaker DJ, Bueno R, Harris JR, et al. Fatal pneumonitis associated with intensity-modulated radiation therapy for mesothelioma. Int J Radiat Oncol Biol Phys. 2006;65(3):640-5. doi: 10.1016/j.ijrobp.2006.03.012.
  21. Kristensen CA, Nøttrup TJ, Berthelsen AK, Kjaer-Kristoffersen F, Ravn J, Sørensen JB, et al. Pulmonary toxicity following IMRT after extrapleural pneumonectomy for malignant pleural mesothelioma. Radiother Oncol. 2009;92(1):96-9. doi: 10.1016/j.radonc.2009.03.011.
  22. Liu HH, Wang X, Dong L, Wu Q, Liao Z, Stevens CW, et al. Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;58(4):1268-79. doi: 10.1016/j.ijrobp.2003.09.085.
  23. Chan OS, Lee MC, Hung AW, Chang AT, Yeung RM, Lee AW. The superiority of hybrid-volumetric arc therapy (VMAT) technique over double arcs VMAT and 3D-conformal technique in the treatment of locally advanced non-small cell lung cancer--a planning study. Radiother Oncol. 2011;101(2):298-302. doi: 10.1016/j.radonc.2011.08.015.
  24. Kim SJ, Lee JW, Kang MK, Kim JC, Lee JE, Park SH, et al. Evaluation of the hybrid-dynamic conformal arc therapy technique for radiotherapy of lung cancer. Radiat Oncol J. 2018;36(3):241-7. doi: 10.3857/roj.2018.00171.
  25. Gayed I, Gohar S, Liao Z, McAleer M, Bassett R, Yusuf SW. The clinical implications of myocardial perfusion abnormalities in patients with esophageal or lung cancer after chemoradiation therapy. Int J Cardiovasc Imaging. 2009;25:487-95. doi: 10.1007/s10554-009-9440-7.
  26. Schytte T, Hansen O, Stolberg-Rohr T, Brink C. Cardiac toxicity and radiation dose to the heart in definitive treated non-small cell lung cancer. Acta Oncol. 2010;49:1058-60. doi: 10.3109/0284186X.2010.504736.
  27. Gagliardi G, Constine LS, Moiseenko V, Correa C, Pierce LJ, Allen AM, et al. Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S77-85. doi: 10.1016/j.ijrobp.2009.04.093.
  28. Belderbos J, Heemsbergen W, Hoogeman M, Pengel K, Rossi M, Lebesque J. Acute esophageal toxicity in non-small cell lung cancer patients after high dose conformal radiotherapy. Radiother Oncol. 2005;75(2):157-64. doi: 10.1016/j.radonc.2005.03.021.
  29. Liu HH, Wang X, Dong L, Wu Q, Liao Z, Stevens CW, et al. Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;58(4):1268-79. doi: 10.1016/j.ijrobp.2003.09.085.
  30. Schwarz M, Alber M, Lebesque JV, Mijnheer BJ, Damen EM. Dose heterogeneity in the target volume and intensity-modulated radiotherapy to escalate the dose in the treatment of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2005;62(2):561-70. doi: 10.1016/j.ijrobp.2005.02.011.