Document Type : Original Article(s)

Authors

1 Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

2 Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

3 Social Determination of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Background: The B-cell-specific Moloney murine leukemia virus integration site1 (BMI-1) is one of the famous members of the Polycomb ring finger group, which plays a crucial role in the gene transcription regulation through histone changes. Hence, it is believed to be necessary to further clarify the effects of the BMI-1 clinical.
Method: This cross-sectional study was conducted on 70 acute myeloid leukemia (AML), 70 chronic myeloid leukemia (CML), and 20 healthy individuals, as the control group. We used real-time quantitative polymerase chain reaction in order to assess the BMI-1 level expression and its effect on prognosis in AML patients in the Molecular Pathology Research Center.
Results: The results of the present work indicated that the BMI-1 overexpression was significantly higher in the AML and CML patients compared with that in the healthy controls (P < 0.001). Furthermore, a significant relationship was observed between the BMI-1 overexpression and poor prognosis in the AML patients (Hazard ratio=1.749, P < 0.001, 95% confidence interval = 1.31-2.32). Additionally, BMI- 1high was found in chronic and blastic phase in the CML patients (P < 0.001).
Conclusion: We concluded that investigation of BMI-1 gene expression pattern will be conducive to the prognosis and treatment of myeloid leukemia.

Keywords

How to cite this article:

Zafari Z, Ayatollahi H, Sohrabi T, Arbab Jafari P, Esmaeili H, Keramati MR. BMI-1 gene expression in patients with acute and chronic myeloid leukemia in the northeast of Iran. Middle East J Cancer. 2023;14(1):41- 8. doi: 10.30476/mejc.2021. 90564.1580.

  1. Estey E, Döhner H. Acute myeloid leukaemia. Lancet. 2006;368(9550):1894-907. doi: 10.1016/S0140- 6736(06)69780-8.
  2. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441. doi: 10.1038/bcj. 2016.50.
  3. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2016 update on diagnosis, therapy, and monitoring. Am J Hematol. 2016;91(2):252-65. doi: 10.1002/ajh. 24275.
  4. Marum JE, Branford S. Current developments in molecular monitoring in chronic myeloid leukemia. Ther Adv Hematol. 2016;7(5):237-51. doi: 10.1177/2040620716657994.
  5. Sherbenou DW, Druker BJ. Applying the discovery of the Philadelphia chromosome. T J Clin Invest. 2007;117(8):2067-74. doi: 101172/JCI31988.
  6. Martin-Perez D, Piris MA, Sanchez-Beato M. Polycomb proteins in hematologic malignancies. Blood. 2010;116(25):5465-75. doi: 10.1182/blood-2010-05- 267096.
  7. Radulovic V, de Haan G, Klauke K. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms. Leukemia. 2013;27(3):523- 33. doi: 10.1038/leu.2012.368.
  8. Cao L, Bombard J, Cintron K, Sheedy J, Weetall ML, Davis TW. BMI1 as a novel target for drug discovery in cancer. J Cell Biochem. 2011;112(10):2729-41. doi: 10.1002/jcb.23234.
  9. Yuan J, Takeuchi M, Negishi M, Oguro H, Ichikawa H, Iwama A. Bmi1 is essential for leukemic reprogramming of myeloid progenitor cells. Leukemia. 2011;25(8):1335-43. doi: 10.1038/leu.2011.85.
  10. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. BMI-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425(6961):962-7. doi: 10.1038/nature02060.
  11. Brown VI, Seif AE, Reid GS, Teachey DT, Grupp SA. Novel molecular and cellular therapeutic targets in acute lymphoblastic leukemia and lymphoproliferative disease. Immunol Res. 2008;42(1-3):84-105. doi: 10.1007/s12026-008-8038-9.
  12. Frazer R, Irvine AE, McMullin MF. Chronic myeloid leukaemia in the 21st century. Ulster Med J. 2007;76(1):8-17.
  13. Lessard J, Sauvageau G. BMI-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423(6937):255-60. doi: 10.1038/ nature01572.
  14. Vonlanthen S, Heighway J, Altermatt HJ, Gugger M, Kappeler A, Borner MM, et al. The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer. 2001;84(10):1372-6. doi: 10.1054/bjoc. 2001.1791.
  15. Kim JH, Yoon SY, Kim CN, Joo JH, Moon SK, Choe IS, et al. The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Lett. 2004;203(2):217-24. doi: 10.1016/j.canlet.2003.07.009.
  16. Qin ZK, Yang JA, Zeng MS, Zhou FJ, Han H, Liu ZW, et al. Expression and clinical significance of BMI-1 protein in bladder cancer. Ai Zheng. 2008;27(12): 1327-30. doi: 10.1186/1471-2407-9-61.
  17. Siddique HR, Saleem M. Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells. 2012;30(3):372-8. doi: 10.1002/stem.1035.
  18. Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe against cancer program. Leukemia. 2003;17(12):2474-86. doi: 10.1038/sj.leu. 2403136.
  19. Saudy NS, Fawzy IM, Azmy E, Goda EF, Eneen A, Salam EMA. BMI1 gene expression in myeloid leukemias and its impact on prognosis. Blood Cells Mol Dis. 2014;53(4):194-8. doi: 10.1016/j.bcmd. 2014.07.002.
  20. Mohty M, Szydlo RM, Yong AS, Apperley JF, Goldman JM, Melo JV. Association between BMI-1 expression, acute graft-versus-host disease, and outcome following allogeneic stem cell transplantation from HLA-identical siblings in chronic myeloid leukemia. Blood. 2008;112(5):2163-6. doi: 10.1182/ blood-2008-04-148130.
  21. Park IK, Morrison SJ, Clarke MF. BMI1, stem cells, and senescence regulation. J Clin Invest. 2004;113(2): 175-9. doi: 10.1172/JCI20800.
  22. Saudy NS, Fawzy IM, Azmy E, Goda EF, Eneen A, Abdul Salam EM. BMI1 gene expression in myeloid leukemias and its impact on prognosis. Blood Cells Mol Dis. 2014;53(4):194-8. doi: 10.1016/j.bcmd. 2014.07.002.
  23. Sawa M, Yamamoto K, Yokozawa T, Kiyoi H, Hishida A, Kajiguchi T, et al. BMI-1 is highly expressed in M0-subtype acute myeloid leukemia. Int J Hematol. 2005;82(1):42-7. doi: 10.1532/IJH97.05013.
  24. Chowdhury M, Mihara K, Yasunaga S, Ohtaki M, Takihara Y, Kimura A. Expression of Polycomb-group (PcG) protein BMI-1 predicts prognosis in patients with acute myeloid leukemia. Leukemia. 2007;21(5):1116-22. doi: 10.1038/sj.leu.2404623.
  25. Chowdhury M, Mihara K, Yasunaga S, Ohtaki M, Takihara Y, Kimura A. Expression of Polycomb-group (PcG) protein BMI-1 predicts prognosis in patients with acute myeloid leukemia. Leukemia. 2007;21(5):1116. doi: 10.1038/sj.leu.2404623.