Document Type : Review Article(s)

Authors

Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Tamil Nadu, India

Abstract

Gastric carcinoma, in India, is the second most prevalent cause of cancer-related deaths since most patients are asymptomatic until the disease progresses to advanced stages. Hence, there is a need for non-invasive and specific biomarkers for early screening and diagnosis.
Human mitochondrial DNA (mtDNA) has 37 genes involved in oxidative phosphorylation pathway (OxPhos). There are several 100 to 1000 mitochondria in a human cell and each mitochondrion has two to 10 copies of mtDNA. There is a significant association between the mtDNA copy number and an increase in risk of various cancers.
There is also a relation between the changes in the sequence of mtDNA in genes, such as MT-CYB, MT-ATP6 and gastric cancer, according to which the tumor cells switch to aerobic glycolysis for ATP production even in the presence of oxygen due to Warburg effect. Multiple factors have an adverse effect on mitochondrial gene expression and impairs the OxPhos pathway due to lack of sophisticated DNA repair mechanism in mitochondria.
Techniques, such as Next Generation Sequencing and Whole Genome Sequencing, are capable of early detection of copy number variants and mtDNA mutations in blood sample essential for better prognosis of gastric cancer.
Through the course of this study, various reports of a correlation between mtDNA damage and gastric cancer were analyzed and it was found that the increasing evidence of the role of mtDNA and its copy number in cancer indicates its significance as a potential biomarker for gastric cancer.

Keywords

How to cite this article:

Pramod S, Magesh S, Parvathi VD. Mitochondrial genetics in gastric cancer. Middle East J Cancer. 2022;13(1): 25-33. doi: 10.30476/mejc.2021.86726.1369.

1.Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, Polkowski WP. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239-48. doi:10.2147/ CMAR.S149619.
2. Nema SK. Robbins basic pathology - (2003). Med J Armed Forces India. 2004;60(1):92. doi:10.1016/ S0377-1237(04)80179-5.
3. Takada K. Epstein-Barr virus and gastric carcinoma. Mol Pathol. 2000;53(5):255-61. doi:10.1136/mp. 53.5.255.
4. Zur Hausen A, Van Rees BP, Van Beek J, Craanen ME, Bloemena E, Offerhaus GJA, et al. Epstein-Barr virus in gastric carcinomas and gastric stump carcinomas: a late event in gastric carcinogenesis. J Clin Pathol. 2004;57(5):487-91. doi:10.1136/jcp. 2003.014068.
5. Cavatorta O, Scida S, Miraglia C, Barchi A, Nouvenne A, Leandro G, et al. Epidemiology of gastric cancer and risk factors. Acta Biomed. 2018;89(8-S):82-7. doi:10.23750/abm.v89i8-S.7966 .
6. Merchant SJ, Nair CK, Booth CM. Leveraging high-quality research to define the gastric cancer landscape in India. Indian J Surg Oncol. 2020;1-3. doi:10.1007/ s13193-020-01066-x.
7. Ibrahim M, Gilbert K. Management of gastric cancer in Indian population. Transl Gastroenterol Hepatol. 2017;2:64. doi:10.21037/tgh.2017.07.02.
8. Rawla P, Barsouk A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Prz Gastroenterol. 2019;14(1):26-38. doi:10.5114/ pg.2018.80001.
9. Servarayan Murugesan C, Manickavasagam K, Chandramohan A, Jebaraj A, Jameel ARA, Jain MS, et al. Gastric cancer in India: epidemiology and standard of treatment. Updates Surg. 2018;70(2):233-9. doi:10.1007/s13304-018-0527-3.
10. Ansari S, Gantuya B, Tuan VP, Yamaoka Y. Diffuse gastric cancer: A summary of analogous contributing factors for its molecular pathogenicity. Int J Mol Sci. 2018;19(8):2424. doi:10.3390/ijms19082424.
11. Fléjou JF. WHO Classification of digestive tumors: the fourth edition. [In French] Ann Pathol. 2011;31(5 Suppl):S27-31. doi:10.1016/j.annpat.2011.08.001.
12. Ellison-Loschmann L, Sporle A, Corbin M, Cheng S, Harawira P, Gray M, et al. Risk of stomach cancer in Aotearoa/New Zealand: A Māori population based case-control study. PLoS One. 2017;12(7):e0181581. doi:10.1371/journal.pone.0181581.
13. Lee JY, Gong EJ, Chung EJ, Park HW, Bae SE, Kim EH, et al. The characteristics and prognosis of diffuse-type early gastric cancer diagnosed during health check-ups. Gut Liver. 2017;11(6):807-12. doi:10.5009/gnl17033.
14. Binh TT, Tuan VP, Dung HDQ, Tung PH, Tri TD, Thuan NPM, et al. Advanced non-cardia gastric cancer and Helicobacter pylori infection in Vietnam. Gut Pathog. 2017;9(1):46. doi:10.1186/s13099-017-0195-8.
15. Lee S, Lee J, Choi IJ, Kim YW, Ryu KW, Kim Y Il, et al. Dietary inflammatory index and the risk of gastric cancer in a Korean population. Oncotarget. 2017;8(49):85452-62. doi:10.18632/oncotarget.20008.
16. Peleteiro B, Lopes C, Figueiredo C, Lunet N. Salt intake and gastric cancer risk according to Helicobacter pylori infection, smoking, tumour site and histological type. Br J Cancer. 2011;104(1):198–207. doi:10.1038/ sj.bjc.6605993.
17. Rota M, Pelucchi C, Bertuccio P, Matsuo K, Zhang ZF, Ito H, et al. Alcohol consumption and gastric cancer risk—A pooled analysis within the StoP project consortium. Int J Cancer. 2017;141(10):1950-62. doi:10.1002/ijc.30891.
18. Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 2019;95(7):912-9. doi:10.1080/09553002. 2019.1589653.
19. Epstein T, Gatenby RA, Brown JS. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PLoS One. 2017;12(9):e0185085. doi:10.1371/journal.pone.0185085.
20. Ganapathy-Kanniappan S. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Crit Rev Biochem Mol Biol. 2018;53(6):667-82. doi:10.1080/10409238. 2018.1556578.
21. Ni Z, He J, Wu Y, Hu C, Dai X, Yan X, et al. AKT-mediated phosphorylation of ATG4B impairs mitochondrial activity and enhances the Warburg effect in hepatocellular carcinoma cells. Autophagy. 2018;14(4):685–701. doi: 10.1080/15548627.2017. 1407887.
22. Bensinger SJ, Christofk HR. New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol. 2012;23(4):352–61. doi:10.1016/j.semcdb. 2012.02.003.
23. Stoneking M. Mitochondrial DNA. In: Trevathan E, editor. The International Encyclopedia of Biological Anthropology. 2018. Hoboken, New Jersey: Wiley.p. 1020-1023. doi:10.1002/9781118584538.ieba0322 .
24. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM. Hungry codons promote frameshifting in human mitochondrial ribosomes. Science. 2010;327(5963):301. doi:10.1126/ science.1180674.
25. Luo S, Valencia CA, Zhang J, Lee NC, Slone J, Gui B, et al. Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci. 2018;115(51):13039–44. doi:10.1073/pnas.1810946115.
26. Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull. 2013;106(1):135-59. doi:10.1093/bmb/ ldt017.
27. Hung WY, Wu CW, Yin PH, Chang CJ, Li AFY, Chi CW, et al. Somatic mutations in mitochondrial genome and their potential roles in the progression of human gastric cancer. Biochem Biophys Acta. 2010;1800(3):264-70. doi:10.1016/j.bbagen.2009. 06.006.
28. Bi R, Li WL, Chen MQ, Zhu Z, Yao YG. Rapid identification of mtDNA somatic mutations in gastric cancer tissues based on the mtDNA phylogeny. Mutat Res. 2011;709-10:15-20. doi:10.1016/j.mrfmmm. 2011.02.016.
29. Jiang J, Zhao JH, Wang XL, Di J, Liu ZB, Li GY, et al. Analysis of mitochondrial DNA in Tibetan gastric cancer patients at high altitude. Mol Clin Oncol. 2015;3(4):875-9. doi:10.3892/mco.2015.539.
30. Wu CW, Yin PH, Hung WY, Li AFY, Li SH, Chi CW, et al. Mitochondria DNA mutations and mitochondrial DNA depletion in gastric cancer. Genes Chromosomes Cancer. 2005;44(1):19-28. doi:10.1002/gcc.20213.
31. Campa D, Barrdahl M, Santoro A, Severi G, Baglietto L, Omichessan H, et al. Mitochondrial DNA copy number variation, leukocyte telomere length, and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Breast Cancer Res. 2018;20(1):29. doi:10.1186/s13058-018-0955-5.
32. Tanaka T, Kobunai T, Yamamoto Y, Murono K, Otani K, Yasuda K, et al. Increased copy number variation of mtDNA in an array-based digital PCR assay predicts ulcerative colitis-associated colorectal cancer. In Vivo. 2017;31(4):713-8. doi:10.21873/invivo.11119.
33. Zhu X, Mao Y, Huang T, Yan C, Yu F, Du J, et al. High mitochondrial DNA copy number was associated with an increased gastric cancer risk in a Chinese population. Mol Carcinog. 2017;56(12):2593-600. doi:10.1002/mc.22703.
34. Rodrigues-Antunes S, Borges BN. Alterations in mtDNA, gastric carcinogenesis and early diagnosis. Mitochondrial DNA A DNA Mapp Seq Anal. 2019; 30(2):226-33. doi:10.1080/24701394.2018. 1475478.
35. Wen SL, Zhang F, Feng S. Decreased copy number of mitochondrial DNA: A potential diagnostic criterion for gastric cancer. Oncol Lett. 2013;6(4):1098-102. doi:10.3892/ol.2013.1492.
36. Lee HC, Huang KH, Yeh TS, Chi CW. Somatic alterations in mitochondrial DNA and mitochondrial dysfunction in gastric cancer progression. World J Gastroenterol. 2014;20(14):3950-9. doi:10.3748/wjg. v20.i14.3950.
37. Lee HC, Li SH, Lin JC, Wu CC, Yeh DC, Wei YH. Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat Res. 2004;547(1-2):71-8. doi:10.1016/j.mrfmmm.2003.12.011.
38. Hung WY, Lin JC, Lee LM, Wu CW, Tseng LM, Yin PH, et al. Tandem duplication/triplication correlated with poly-cytosine stretch variation in human mitochondrial DNA D-loop region. Mutagenesis. 2008;23(2):137-42. doi:10.1093/mutage/gen002.
39. Lee HC, Wei YH. Mitochondrial DNA instability and metabolic shift in human cancers. Int J Mol Sci. 2009;10(2):674-701. doi:10.3390/ijms10020674.
40. Zhao YB, Yang HY, Zhang XW, Chen GY. Mutation in D-loop region of mitochondrial DNA in gastric cancer and its significance. World J Gastroenterol. 2005;11(21):3304-6. doi:10.3748/wjg.v11.i21.3304.
41.Doudican NA, Song B, Shadel GS, Doetsch PW. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae. Mol Cell Biol. 2005;25(12):5196-204. doi:10.1128/MCB.25.12.5196-5204.2005.
42. Graziewicz MA, Day BJ, Copeland WC. The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res. 2002;30(13):2817-24. doi:10.1093/nar/gkf392.
43. Singh KK, Ayyasamy V, Owens KM, Koul MS, Vujcic M. Mutations in mitochondrial DNA polymerase-gamma promote breast tumorigenesis. J Hum Genet. 2009;54(9):516-24. doi:10.1038/jhg.2009.71.
44. Halliberry B, Gutteridge JMC. Free radicals in biology and medicine. Oxford Scholarship Online. 2015;5:905-61. doi: 10.1093/acprof:oso/9780198717478.001.0001.
45. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309(5733):481-4. doi:10.1126/science. 1112125.
46. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417-23. doi:10. 1038/nature02517.
47. Zhang XY, Zhang PY, Aboul-Soud MA. From inflammation to gastric cancer: Role of Helicobacter pylori. Oncol Lett. 2017;13(2):543-48. doi:10.3892/ ol.2016.5506.
48. Sugano K. Effect of Helicobacter pylori eradication on the incidence of gastric cancer: a systematic review and meta-analysis. Gastric Cancer. 2019;22(3):435-45. doi:10.1007/s10120-018-0876-0.
49. Moss SF. The clinical evidence linking Helicobacter pylori to gastric cancer. Cell Mol Gastroenterol Hepatol. 2016;3(2):183-91. doi:10.1016/j.jcmgh. 2016.12.001.
50. Chatre L, Fernandes J, Michel V, Fiette L, Avé P, Arena G, et al. Helicobacter pylori targets mitochondrial import and components of mitochondrial DNA replication machinery through an alternative VacA-dependent and a VacA-independent mechanisms. Sci Rep. 2017;7(1):15901. doi:10.1038/s41598-017-15567-3.
51. Machado AM, Desler C, Bøggild S, Strickertsson JA, Friis-Hansen L, Figueiredo C, et al. Helicobacter pylori infection affects mitochondrial function and DNA repair, thus, mediating genetic instability in gastric cells. Mech Ageing Dev. 2013;134(10):460-6. doi:10. 1016/j.mad.2013.08.004.
52. Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, et al. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol. 2020;98:139-53. doi:10.1016/j.semcdb.2019. 05.022.
53. Liu Y, Zhang Z, Wang J, Chen C, Tang X, Zhu J, et al. Metabolic reprogramming results in abnormal glycolysis in gastric cancer: a review. Onco Targets Ther. 2019;12:1195-204. doi:10.2147/OTT.S189687.
54. Esparza-Moltó PB, Cuezva JM. Reprogramming oxidative phosphorylation in cancer: A role for RNA-binding proteins. Antioxid Redox Signal. 2020;10.1089/ars.2019.7988. doi:10.1089/ars. 2019.7988.
55. Shen L, Sun B, Sheng J, Yu S, Li Y, Xu H, et al. PGC1α promotes cisplatin resistance in human ovarian carcinoma cells through upregulation of mitochondrial biogenesis. Int J Oncol. 2018;53(1):404-16. doi:10. 3892/ijo.2018.4401.
56. Fernandes J, Michel V, Camorlinga-Ponce M, Gomez A, Maldonado C, De Reuse H, et al. Circulating mitochondrial DNA level, a noninvasive biomarker for the early detection of gastric cancer. Cancer Epidemiol Biomarkers Prev. 2014;23(11):2430-8. doi:10.1158/1055-9965.EPI-14-0471.
57. Cavalcante GC, Marinho A, Anaissi AK, Vinasco-Sandoval T, Ribeiro-Dos-Santos A, Vidal AF, et al. Whole mitochondrial genome sequencing highlights mitochondrial impact in gastric cancer. Sci Rep. 2019;9(1):15716. doi:10.1038/s41598-019-51951-x.
58. Muramatsu H, Honda K, Akanuma S, Ishizawa F, Umino K, Iwabuchi Y, et al. Trial to search for mitochondrial DNA mutation associated with cancer detected by massively parallel sequencing. Forensic Sci Int Genet Suppl Ser. 2019;7(1):698-700. doi.org/10.1016/j.fsigss.2019.10.143.
59. Németh K, Darvasi O, Likó I, Szücs N, Czirják S, Reiniger L, et al. Next-generation sequencing identifies novel mitochondrial variants in pituitary adenomas. J Endocrinol Invest. 2019;42(8):931-40. doi:10.1007/ s40618-019-1005-6.
60. Nakagawa H, Fujita M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci. 2018;109(3):513-22. doi:10.1111/cas. 13505.
61. Nakagawa H, Wardell CP, Furuta M, Taniguchi H, Fujimoto A. Cancer whole-genome sequencing: present and future. Oncogene. 2015;34(49):5943-50. doi:10. 1038/onc.2015.90.
62. Verma R, Sharma PC. Next generation sequencing-based emerging trends in molecular biology of gastric cancer. Am J Cancer Res. 2018;8(2):207-25.
63. Wang FH, Shen L, Li J, Zhou ZW, Liang H, Zhang XT, et al. The Chinese Society of Clinical Oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer. Cancer Commun (Lond). 2019;39(1):10. doi:10.1186/s40880-019-0349-9.
64. Fukagawa T, Katai H, Mizusawa J, Nakamura K, Sano T, Terashima M, et al. A prospective multi-institutional validity study to evaluate the accuracy of clinical diagnosis of pathological stage III gastric cancer (JCOG1302A). Gastric Cancer. 2018;21(1):68-73. doi:10.1007/s10120-017-0701-1.
65. Necula L, Matei L, Dragu D, Neagu AI, Mambet C, Nedeianu S, et al. Recent advances in gastric cancer early diagnosis. World J Gastroenterol. 2019;25(17): 2029-44. doi:10.3748/wjg.v25.i17.2029.
66. Yuan HL, Wang T, Zhang KH. MicroRNAs as potential biomarkers for diagnosis, therapy and prognosis of gastric cancer. Onco Targets Ther. 2018;11:3891-900. doi:10.2147/OTT.S156921.
67. Takeuchi H, Kitagawa Y. New sentinel node mapping technologies for early gastric cancer. Ann Surg Oncol. 2013;20(2):522-32. doi:10.1245/s10434-012-2602-1.
68. Afrifa J, Zhao T, Yu J. Circulating mitochondria DNA, a non-invasive cancer diagnostic biomarker candidate. Mitochondrion. 2019;47:238-43. doi:10.1016/j.mito. 2018.12.003.