Document Type : Original Article

Authors

1 Department of Medical Laboratory Science, University of Calabar, Calabar, Nigeria

2 Department of Chemical Pathology, University of Calabar Teaching Hospital, Calabar, Nigeria

3 Department of Optometry, Imo State University, Owerri, Nigeria

Abstract

Background: Heavy metal (HM) toxicity has been described as a risk factor for the development of prostate disease in men and its assessment could predict susceptibility to prostate cancer (PCa). The current study aimed to assess the levels of HM (selenium [Se], copper [Cu], chromium [Cr] and lead [Pb], iron [Fe], zinc [Zn], magnesium [Mg], and cobalt [Co]) in men with PCa.
Method: 90 men aged 40 to 75 years, including 30 men with PCa, 30 with benign prostatic hyperplasia (BPH), and 30 controls, were recruited in this case-control study. Prostate specific antigen (PSA) was estimated via enzyme linked immunosorbent assay and heavy metals with atomic absorption spectrophotometry. Body mass index (BMI) was also determined.
Results: The men with PCa had significantly higher BMI, PSA, Fe, and Pb and lower Mg, Zn, Cu, and Se compared with the controls. They also had higher PSA, Fe, and Co compared with the BPH (P < 0.05). Those with BPH had higher BMI, PSA, and Fe and lower Mg, Zn, Cu, Se, and Co compared with the controls (P < 0.05). Zn was positively correlated with Mg (r = 0.937, P < 0.001, Cu (r = 0.548, P = 0.002), Se (r = 0.731, P < 0.001), and Co (r=0.733, P < 0.001) only in the men with PCa. Levels of Cu, Mg, and Se were associated with the risk of BPH and PCa.
Conclusion: The men with prostate disease were found to have higher levels of lead and iron and lower magnesium, copper, selenium, and zinc, which necessitate assessment of these elements for early detection of prostate cancer and monitoring the progression of the disease.

Keywords

How to cite this article:

Nsonwu-Anyanwu AC, Icha BE, Nsonwu MC, William MI, Emughupogh KT, Opara Usoro CA. Assessment of essential and non-essential elements as risk evaluation indices in men with prostate cancer in Calabar South-South Nigeria. Middle East J Cancer. 2022;13(2):285- 92. doi: 10.30476/mejc.2021. 86638.1361.

1. Jedy-Agba E, Curado MP, Ogunbiyi O, Oga E,
Fabowole T, Igbinoba F, et al. Cancer incidence in
Nigeria: A report from population-based cancer
registries. Cancer Epidemiol. 2012;36: e271–e278.
doi.org/10.1016/j.canep.2012.04.007.
2. Mahmoud AM, Al-Alem U, Dabbous F, Ali MM, Batai
K, Shah E, et al. Zinc intake and risk of prostate
cancer: Case-control study and meta-analysis. PLoS
One. 2016;11(11):e0165956. doi: 10.1371/journal.
pone.0165956.
3. Kaba M, Pirincci N, Yuksel MB, Gecit I, Gunes M,
Ozveren H, et al. Serum levels of trace elements in
patients with prostate cancer. Asian Pac J Cancer
Prev. 2014;15(6):2625-9. doi: 10.7314/apjcp.2014.
15.6.2625.
4. Banas A, Kwiatek WM, Banas K, Gajda M, Pawlicki
B, Cichocki T. Correlation of concentrations of selected
trace elements with Gleason grade of prostate tissues.
J Biol Inorg Chem. 2010;15(7):1147-55. doi:
10.1007/s00775-010-0675-5.
5. Liu Y, Tang M, Zhou Z, Shi H, Lu J. Advances in
molecular mechanisms of heavy metal induced cell
malignant transformation. Cancer Rep Rev. 2018;2(2):
1-4.
6. IARC: International Agency for Research on Cancer
Lyon, France; Monographs on the evaluation of
carcinogenic risks to humans, Inorganic and organic
lead compounds; 2006, vol. 87. p.134. Available from:
http://monographs.iarc.fr/.
7. Zhanga C, Caia K, Fengb Q, Xua Y, Zhanga Z.
Chromium (VI) promotes cell migration through
targeting epithelialmesenchymal transition in prostate
cancer. Toxicol Lett. 2019; 300: 10-7. doi: 10.1016/j.
toxlet.2018.10.012.
8. Dai Q, Motley SS, Smith JA, Concepcion R, Barocas
D, Byerly S, et al. Blood magnesium, and the
interaction with calcium, on the risk of high-grade
prostate cancer. PLoS One. 2011;6(4):e18237. doi:
10.1371/journal.pone.0018237.
9. Inyengar GR, Subramanian KS, Woittiez JRW. Element
analysis of biological samples; Principles and Practice.
Chapter 5; Sample decomposition. 1st ed. Boca Raton:
CRC Press; 1998.p. 103-35. doi:10.1201/9781003
068358.
10. Stowell LI, Sharman IE, Hamel K. An enzyme-linked
immunosorbent assay for prostate-specific antigen.
Forensic Sci Intern. 1991;50:125-38. doi: 10.1016/
0379-0738(91)90141-5.
11. Everson ME. Spectrophotometric techniques. In:
Burtis, CA; Ashwood, ER, editors. Tietz Textbook of
Clinical Chemistry. 2nd ed. Philadelphia: Saunders;
1999.p.75-93.
12. Lilja H, Ulmert D, Vickers AJ. Prostate-specific antigen
and prostate cancer: prediction, detection and
monitoring. Nat Rev Cancer. 2008;8:268-78. doi:
10.1038/nrc2351.
13. Sävblom C, Malm J, Giwercman A, Nilsson JA,
Berglund G, Lilja H. Blood levels of free-PSA but
not complex-PSA significantly correlates to prostate
release of PSA in semen in young men, while blood
levels of complex-PSA, but not free-PSA increase
with age. Prostate. 2005;65:66-72. doi.org/10.1002/
pros.20254.
14. Whittemore AS, Cirillo PM, Feldman D, Cohn BA.
Prostate specific antigen levels in young adulthood
predict prostate cancer risk: results from a cohort of
black and white Americans. J Urol. 2005;174:872-
80. doi: 10.1097/01.ju.0000169262.18000.8a.
15. Bonn SE, Sjolander A, Tillander A, Wiklund F,
Gronberg H, Balter K. Body mass index in relation
to serum prostate-specific antigen levels and prostate
cancer risk. Int J Cancer. 2016;139:50-7. doi:
10.18632/oncotarget.11453.
16. Parikesit D, Mochtar CA, Umbas R, Hamid ARA.
The impact of obesity towards prostate diseases.
Prostate Int. 2016;4:1-6. doi: 10.1016/j.prnil.
2015.08.001.
17. Printz C. Higher BMI, waist circumference associated
with increased risk of aggressive prostate cancer.
Cancer. 2016;122(19):2937. doi.org/10.1002/cncr.
30335.
18. Vidal AC, Freedland SJ. Obesity and prostate cancer:
A focused update on active surveillance, race, and
molecular subtyping. Eur Urol. 2017;72(1):78-83.
doi: 10.1016/j.eururo.2016.10.011.
19. Eken A, Ünlü-Endirlik B, Kaya E, Özgök Y, Erdem
O, Akay C. Evaluation of trace element levels in
patients with prostate cancer, benign prostatic
hyperplasia and chronic prostatitis. Gülhane Týp Derg.
2016;58:27-32. doi: 10.5455/gulhane. 193330.
20. Peters U, Foster CB, Chatterjee N, Schatzkin A, Reding
D, Andriole GL, et al. Serum selenium and risk of
prostate cancer-a nested case-control study. Am J Clin
Nutr. 2007;85(1):209-17. doi: 10.1093/ajcn/85.1.209.
Erratum in: Am J Clin Nutr. 2007;86(3):808.
21. Shah S, Minhas U, Khan HA. Trace minerals and
heavy metals: Implications in prostate cancer. World
Cancer Res. J. 2015;2(4): e625.
22. Chasapis CT, Loutsidou AC, Spiliopoulou CA,
Stefanidou ME. Zinc and human health: an update.
Arch Toxicol. 2012;86(4):521-34. doi: 10.1007/s00204-
011-0775-1.
23. Gray MA, Centeno JA, Slaney DP, Ejnik JW, Todorov
T, Nacey JN. Environmental exposure to trace elements
and prostate cancer in three New Zealand ethnic
groups. Int J Environ Res Public Health. 2005;2(3-
4):374-84. doi: 10.3390/ijerph2005030001.
24. Costello LC, Franklin RB. The clinical relevance of
the metabolism of prostate cancer; zinc and tumor
suppression: connecting the dots. Mol Cancer.
2006;5:17. doi: 10.1186/1476-4598-5-17.
25. Zaichick V, Zaichick S. Ratios of magnesium/trace
element contents in prostate gland as carcinoma’s
markers. Cancer Rep Rev. 2017;1(1):1-7. doi:
10.15761/CRR.1000105.
26. Siddiqui MK, Srivastava S, Mehrotra PK.
Environmental exposure to lead as a risk for prostate
cancer. Biomed. Environ Sci. 2002;15(4):298-305.
27. Karimi G, Shahar S, Homayouni N, Rajikan R, Abu
Bakar NF, Othman MS. Association between trace
element and heavy metal levels in hair and nail with
prostate cancer. Asian Pac J Cancer Prev.
2012;13(9):4249-53. doi: 10.7314/apjcp.2012.13.9.
4249.
28. Fukuda H, Ebara M, Yamada H, M, Arimoto M, Okabe
S, Obu M, et al. Trace elements and cancer. Japan
Med Assoc J. 2004;47(8):391-5.
29. Vela D. Iron metabolism in prostate cancer; from basic
science to new therapeutic strategies. Front Oncol.
2018;8:547. doi: 10.3389/fonc.2018.00547.
30. Davoodi SH, Jamshidi-Naeini Y, Esmaeili S,
Sohrabvandi S, Amir R. The dual nature of iron in
relation to cancer: A review. Iran J Cancer Prev.
20169(6):e5494. doi: 10.17795/ijcp-5494.
31. Yaman M, Atici D, Bakirdere S, Akdeniz I. Comparison
of trace metal concentrations in malign and benign
human prostate. J Med Chem. 2005;48(2):630-4. doi:
10.1021/jm0494568.
32. D’orta A, Del buono A. Interactions between
nutritional and toxic metals: a dietary approach
comment to “trace minerals and heavy metals:
implications in prostate cancer. World Cancer Res J.
2016; 3(1): e635.
33. Saleh SAK, Adly HM, Abdelkhaliq AA, Nassir AM.
Serum levels of Selenium, Zinc, Copper, Manganese,
and Iron in prostate cancer patients. Curr Urol.
2020;14(1):44-9. doi: 10.1159/000499261.
1􀀑 Jedy-Agba E, Curado MP, Ogunbiyi O, Oga E,
Fabowole T, Igbinoba F, et al. Cancer incidence in
Nigeria: A report from population-based cancer
registries. Cancer Epidemiol. 2012;36: e271–e278.
doi.org/10.1016/j.canep.2012.04.007.
2􀀑 Mahmoud AM, Al-Alem U, Dabbous F, Ali MM, Batai
K, Shah E, et al. Zinc intake and risk of prostate
cancer: Case-control study and meta-analysis. PLoS
One. 2016;11(11):e0165956. doi: 10.1371/journal.
pone.0165956.
3􀀑 Kaba M, Pirincci N, Yuksel MB, Gecit I, Gunes M,
Ozveren H, et al. Serum levels of trace elements in
patients with prostate cancer. Asian Pac J Cancer
Prev. 2014;15(6):2625-9. doi: 10.7314/apjcp.2014.
15.6.2625.
4􀀑 Banas A, Kwiatek WM, Banas K, Gajda M, Pawlicki
B, Cichocki T. Correlation of concentrations of selected
trace elements with Gleason grade of prostate tissues.
J Biol Inorg Chem. 2010;15(7):1147-55. doi:
10.1007/s00775-010-0675-5.
5􀀑 Liu Y, Tang M, Zhou Z, Shi H, Lu J. Advances in
molecular mechanisms of heavy metal induced cell
malignant transformation. Cancer Rep Rev. 2018;2(2):
1-4.
6􀀑 IARC: International Agency for Research on Cancer
Lyon, France; Monographs on the evaluation of
carcinogenic risks to humans, Inorganic and organic
lead compounds; 2006, vol. 87. p.134. Available from:
http://monographs.iarc.fr/.
7􀀑 Zhanga C, Caia K, Fengb Q, Xua Y, Zhanga Z.
Chromium (VI) promotes cell migration through
targeting epithelialmesenchymal transition in prostate
cancer. Toxicol Lett. 2019; 300: 10-7. doi: 10.1016/j.
toxlet.2018.10.012.
8􀀑 Dai Q, Motley SS, Smith JA, Concepcion R, Barocas
D, Byerly S, et al. Blood magnesium, and the
interaction with calcium, on the risk of high-grade
prostate cancer. PLoS One. 2011;6(4):e18237. doi:
10.1371/journal.pone.0018237.
9􀀑 Inyengar GR, Subramanian KS, Woittiez JRW. Element
analysis of biological samples; Principles and Practice.
Chapter 5; Sample decomposition. 1st ed. Boca Raton:
CRC Press; 1998.p. 103-35. doi:10.1201/9781003
068358.
10􀀑 Stowell LI, Sharman IE, Hamel K. An enzyme-linked
immunosorbent assay for prostate-specific antigen.
Forensic Sci Intern. 1991;50:125-38. doi: 10.1016/
0379-0738(91)90141-5.
11􀀑 Everson ME. Spectrophotometric techniques. In:
Burtis, CA; Ashwood, ER, editors. Tietz Textbook of
Clinical Chemistry. 2nd ed. Philadelphia: Saunders;
1999.p.75-93.
12􀀑 Lilja H, Ulmert D, Vickers AJ. Prostate-specific antigen
and prostate cancer: prediction, detection and
monitoring. Nat Rev Cancer. 2008;8:268-78. doi:
10.1038/nrc2351.
13􀀑 Sävblom C, Malm J, Giwercman A, Nilsson JA,
Berglund G, Lilja H. Blood levels of free-PSA but
not complex-PSA significantly correlates to prostate
release of PSA in semen in young men, while blood
levels of complex-PSA, but not free-PSA increase
with age. Prostate. 2005;65:66-72. doi.org/10.1002/
pros.20254.
14􀀑 Whittemore AS, Cirillo PM, Feldman D, Cohn BA.
Prostate specific antigen levels in young adulthood
predict prostate cancer risk: results from a cohort of
black and white Americans. J Urol. 2005;174:872-
80. doi: 10.1097/01.ju.0000169262.18000.8a.
15􀀑 Bonn SE, Sjolander A, Tillander A, Wiklund F,
Gronberg H, Balter K. Body mass index in relation
to serum prostate-specific antigen levels and prostate
cancer risk. Int J Cancer. 2016;139:50-7. doi:
10.18632/oncotarget.11453.
16􀀑 Parikesit D, Mochtar CA, Umbas R, Hamid ARA.
The impact of obesity towards prostate diseases.
Prostate Int. 2016;4:1-6. doi: 10.1016/j.prnil.
2015.08.001.