Document Type : Original Article

Authors

1 Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Background: Breast cancer is known to be one of the most prevalent malignancies in women worldwide. Umbelliprenin (UMB) is a naturally-occurring component derived from plant species, which has shown anticancer properties. The present study aimed to evaluate the effect of UMB on the PI3K / Akt / ERK signaling pathway and their products HIF-1α / VEGF in the MDA-MB-231 cell line.
Method: In this experimental study, the cytotoxic effect of UMB on MDA-MB- 231 cells was evaluated using the MTT assay and the UMB concentrations of IC5 and IC10 were selected for the signaling pathway study. MDA-MB-231 cells were stimulated with EGF and CoCl2 and UMB IC5 and IC10 effects on gene expression and translation was studied. PI3K / Akt / mTOR / S6K / Erk1 and 2 / 4E-BP1 / HIF-1α / HIF-1α/ EGFR / VEGFR and VEGF mRNA expression, and VEGF / HIF-1α proteins were evaluated employing real time polymerase chain reaction and western blot analysis, respectively.
Results: The concentrations of UMB in IC10 and IC5 were 20 and 10 μM, respectively. UMB, specifically IC10, significantly inhibited PI3K, ERK1, ERK2, Akt, mTOR, HIF1-α, HIF1-β mRNA, as well as HIF-1α and VEGF protein expression.
Conclusion: Our results suggested that UMB, a cytotoxic agent, inhibits PI3K / Akt / ERK signal pathway in the CoCl2 or EGF-stimulated MDA-MB-231 cells.

Keywords

How to cite this article:

Mahmoodi Khatonabadi S, Salami S, Mirfakhraie R, Atabakhshian R, Sirati-Sabet M, Gholamali Yaghmaei B, et al. Umbelliprenin inhibited angiogenesis and metastasis of MDA-MB-231 cell line through downregulation of CoCl2 / EGF-mediated PI3K / AKT / ERK signaling. Middle East J Cancer. 2022;13(2):226-36-p. doi: 10.30476/mejc.2021. 86492.1347.

1. Najminejad H, Kalantar SM, Abdollahpour-Alitappeh
M, Karimi MH, Seifalian AM, Gholipourmalekabadi
M, et al. Emerging roles of exosomal miRNAs in
breast cancer drug resistance. IUBMB Life.
2019;71(11):1672-84. doi:10.1002/iub.2116.
2. Toss A, Cristofanilli M. Molecular characterization
and targeted therapeutic approaches in breast cancer.
Breast Cancer Res. 2015;17(1):60. doi:
10.1186/s13058-015-0560-9.
3. Waks AG, Winer EP. Breast cancer treatment: A review.
JAMA. 2019;321(3):288-300. doi:10.1001/jama.
2018.19323.
4. Abdollahpour-Alitappeh M, Lotfinia M, Bagheri N,
Sineh Sepehr K, Habibi-Anbouhi M, Kobarfard F, et
al. Trastuzumab-monomethyl auristatin E conjugate
exhibits potent cytotoxic activity in vitro against
HER2-positive human breast cancer. J Cell Physiol.
2019;234(3):2693-704. doi:10.1002/jcp.27085.
5. Zhong M, Li N, Qiu X, Ye Y, Chen H, Hua J, et al.
TIPE regulates VEGFR2 expression and promotes
angiogenesis in colorectal cancer. Int J Biol Sci.
2020;16(2):272. doi: 10.7150/ijbs.37906.
6. Farhdihosseinabadi B, Salimi M, Kazemi B,
Ghanbarian H, Mozafari M, Niknejad H. Inducing
type 2 immune response, induction of angiogenesis,
and anti-bacterial and anti-inflammatory properties
make Lacto-n-Neotetraose (LNnT) a therapeutic choice
to accelerate the wound healing process. Med
Hypotheses. 2020;134:109389. doi: 10.1016/j.mehy.
2019.109389.
7. Chen YJ, Wu SC, Wang HC, Wu TH, Yuan SSF, Lu
TT, et al. AActivation of angiogenesis and wound healing in diabetic mice using no-delivery dinitrosyl
iron complexes. Mol Pharm. 2019;16(10):4241-51.
doi:10.1021/acs.molpharmaceut.9b00586.
8. Javadian M, Gharibi T, Shekari N, Abdollahpour-
Alitappeh M, Mohammadi A, Hossieni A, et al. The
role of microRNAs regulating the expression of matrix
metalloproteinases (MMPs) in breast cancer
development, progression, and metastasis. J Cell
Physiol. 2019;234(5):5399-412. doi: 10.1002/jcp.
27445.
9. Qin S, Li A, Yi M, Yu S, Zhang M, Wu K. Recent
advances on anti-angiogenesis receptor tyrosine kinase
inhibitors in cancer therapy. J Hematol Oncol.
2019;12(1):27. doi: 10.1186/s13045-019-0718-5.
10. De Palma M, Biziato D, Petrova TV. Microenvironmental
regulation of tumour angiogenesis. Nat Rev
Cancer. 2017;17(8):457-74. doi: 10.1038/nrc.2017.51.
11. Larsen AK, Ouaret D, El Ouadrani K, Petitprez A.
Targeting EGFR and VEGF(R) pathway cross-talk in
tumor survival and angiogenesis. Pharmacol Ther.
2011;131(1):80-90. doi: 10.1016/j.pharmthera.
2011.03.012.
12. Krock BL, Skuli N, Simon MC. Hypoxia-induced
angiogenesis: good and evil. Genes Cancer.
2011;2(12):1117-33. doi: 10.1177/1947601911423654.
13. Koyasu S, Kobayashi M, Goto Y, Hiraoka M, Harada
H. Regulatory mechanisms of hypoxia-inducible factor
1 activity: Two decades of knowledge. Cancer Sci.
2018;109(3):560-71. doi: 10.1111/cas.13483.
14. van Cruijsen H, Giaccone G, Hoekman K. Epidermal
growth factor receptor and angiogenesis: Opportunities
for combined anticancer strategies. Int J Cancer.
2005;117(6):883-8. doi: 10.1002/ijc.21479.
15. Karar J, Maity A. PI3K/AKT/mTOR pathway in
angiogenesis. Front Mol Neurosci. 2011;4:51. doi:
10.3389/fnmol.2011.00051.
16. Conway EM, Collen D, Carmeliet P. Molecular
mechanisms of blood vessel growth. Cardiovasc Res.
2001;49(3):507-21. doi: 10.1016/s0008-6363(00)
00281-9.
17. Laderoute KR, Calaoagan JM, Gustafson-Brown C,
Knapp AM, Li GC, Mendonca HL, et al. The response
of c-Jun/AP-1 to chronic hypoxia is hypoxia-inducible
factor 1α dependent. Mol Cell Biol. 2002;22(8):2515-
23. doi: 10.1128/MCB.22.8.2515-2523.2002.
18. Liu ZJ, Semenza GL, Zhang HF. Hypoxia-inducible
factor 1 and breast cancer metastasis. J Zhejiang Univ
Sci B. 2015;16(1):32-43. doi: 10.1631/jzus.B1400221.
19. Zhang J, Lu A, Beech D, Jiang B, Lu Y. Suppression
of breast cancer metastasis through the inhibition of
VEGF-mediated tumor angiogenesis. Cancer Ther.
2007;5:273-86.
20. Hamidinia M, Ramezani M, Mojtahedi Z.
Cytotoxic/proliferative effects of umbelliprenin on
colon cancer cell lines. Ann Colorectal Res.
2013;1(3):101-5. doi:10.5812/acr.12476.
21. Shakeri A, Iranshahy M, Iranshahi M. Biological
properties and molecular targets of umbelliprenin–a
mini-review. J Asian Nat Prod Res. 2014;16(8):884-
9. doi: 10.1080/10286020.2014.917630.
22. Zhang L, Sun X, Si J, Li G, Cao L. Umbelliprenin
isolated from Ferula sinkiangensis inhibits tumor
growth and migration through the disturbance of Wnt
signaling pathway in gastric cancer. PLoS One.
2019;14(7):e0207169. doi:10.1371/journal.pone.
0207169.
23. Khaghanzadeh N, Nakamura K, Kuramitsu Y, Ghaderi
A, Mojtahedi Z. Immune-associated proteins with
potential in vivo anti-tumor activities are upregulated
in lung cancer cells treated with umbelliprenin: A
proteomic approach. Oncol Lett. 2016;12(6):5295-
302. doi: 10.3892/ol.2016.5352.
24. Naderi Alizadeh M, Rashidi M, Muhammadnejad A,
Moeini Zanjani T, Ziai SA. Antitumor effects of
umbelliprenin in a mouse model of colorectal cancer.
Iran J Pharm Res. 2018;17(3):976-85.
25. Rashidi M, Khalilnezhad A, Amani D, Jamshidi H,
Muhammadnejad A, Bazi A, et al. Umbelliprenin
shows antitumor, antiangiogenesis, antimetastatic,
anti-inflammatory, and immunostimulatory activities
in 4T1 tumor-bearing Balb/c mice. J Cell Physiol.
2018;233(11):8908-18. doi: 10.1002/jcp.26814.
26. Madmoli M. Evaluation of chemotherapy
complications in patients with cancer: A systematic
review. International Journal of Research Studies in
Science, Engineering and Technology. 2018;5(12):59-
64.
27. Rajabi M, Mousa SA. The role of angiogenesis in
cancer treatment. Biomedicines. 2017;5(2):34. doi:
10.3390/biomedicines5020034.
28. Frandsen S, Kopp S, Wehland M, Pietsch J, Infanger
M, Grimm D. Latest results for anti-angiogenic drugs
in cancer treatment. Curr Pharm Des.
2016;22(39):5927-42. doi: 10.2174/1381612822666
160715130419.
29. Khaghanzadeh N, Mojtahedi Z, Ramezani M, Erfani
N, Ghaderi A. Umbelliprenin is cytotoxic against QUDB
large cell lung cancer cell line but anti-proliferative
against A549 adenocarcinoma cells. Daru. 2012;20(1):
69. doi: 10.1186/2008-2231-20-69.
30. Taddeo VA, Epifano F, Preziuso F, Fiorito S, Caron
N, Rives A, et al. HPLC analysis and skin whitening
effects of umbelliprenin-containing extracts of anethum
graveolens, pimpinella anisum, and ferulago
campestris. Molecules. 2019;24(3):501. doi: 10.3390/
molecules24030501.
31. Rashidi M, Ziai SA, Zanjani TM, Khalilnezhad A,
Jamshidi H, Amani D. Umbelliprenin is potentially
toxic against the HT29, CT26, MCF-7, 4T1, A172,
and GL26 cell lines, potentially harmful against bone
marrow-derived stem cells, and non-toxic against
peripheral blood mononuclear cells. Iran Red Crescent Med J. 2016;18(7)doi: 10.5812/ircmj.35167.
32. Sigismund S, Avanzato D, Lanzetti L. Emerging
functions of the EGFR in cancer. Mol Oncol.
2018;12(1):3-20. doi: 10.1002/1878-0261.12155.
33. Goldman CK, Kim J, Wong WL, King V, Brock T,
Gillespie GY. Epidermal growth factor stimulates
vascular endothelial growth factor production by
human malignant glioma cells: a model of glioblastoma
multiforme pathophysiology. Mol Biol Cell. 1993;4(1):
121-33. doi: 10.1091/mbc.4.1.121.
34. Muz B, de la Puente P, Azab F, Azab AK. The role of
hypoxia in cancer progression, angiogenesis,
metastasis, and resistance to therapy. Hypoxia (Auckl).
2015;3:83-92. doi: 10.2147/HP.S93413.
35. Chen R, Xu J, She Y, Jiang T, Zhou S, Shi H, et al.
Necrostatin-1 protects C2C12 myotubes from CoCl2-
induced hypoxia. Int J Mol Med. 2018;41(5):2565-72.
doi: 10.3892/ijmm.2018.3466.
36. Rana NK, Singh P, Koch B. CoCl2 simulated hypoxia
induce cell proliferation and alter the expression pattern
of hypoxia associated genes involved in angiogenesis
and apoptosis. Biol Res. 2019;52(1):12. doi:
10.1186/s40659-019-0221-z.
37. Li Q, Ma R, Zhang M. CoCl2 increases the expression
of hypoxic markers HIF-1α, VEGF and CXCR4 in
breast cancer MCF-7 cells. Oncol Lett.
2018;15(1):1119-24. doi: 10.3892/ol.2017.7369.
38. Jang Y, Han J, Kim SJ, Kim J, Lee MJ, Jeong S, et al.
Suppression of mitochondrial respiration with
auraptene inhibits the progression of renal cell
carcinoma: involvement of HIF-1α degradation.
Oncotarget. 2015;6(35):38127. doi: 10.18632/
oncotarget.5511.
39. Motlagh FM, Gholami O. Comparison of
Umbelliprenin and Auraptene in cytotoxic effects and
myeloid cell leukemia type-1 (Mcl-1) gene expression.
Indian J Pharm Sci. 2017;78(6):827-33. doi:
10.4172/pharmaceutical-sciences.1000189.
40. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier
C, Brown M, Dutcher J, et al. Regulation of mammary
stem/progenitor cells by PTEN/Akt/beta-catenin
signaling. PLoS Biol. 2009;7(6):e1000121. doi:
10.1371/journal.pbio.1000121.
41. Fu X, Osborne CK, Schiff R. Biology and therapeutic
potential of PI3K signaling in ER+/HER2-negative
breast cancer. Breast. 2013;22 Suppl 2:S12-8. doi:
10.1016/j.breast.2013.08.001.
42. Chang CH, Ou TT, Yang MY, Huang CC, Wang CJ.
Nelumbo nucifera Gaertn leaves extract inhibits the
angiogenesis and metastasis of breast cancer cells by
downregulation connective tissue growth factor
(CTGF) mediated PI3K/AKT/ERK signaling. J
Ethnopharmacol. 2016;188:111-22. doi: 10.1016/j.jep.
2016.05.012.