Document Type : Original Article(s)

Authors

1 Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran

2 Department of Hematology and Medical Laboratory Sciences, Iranshahr University of Medical Sciences, Iranshahr, Iran

3 Department of Hemato-Oncology, Kerman University of Medical Sciences, Kerman, Iran

4 Molecular Medicine Research Center, Institute of Basic Medical Sciences, Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran

Abstract

Background: The CXCR4 receptor along with CXCL12 is believed to have an effect on the onset, progression, migration, and treatment complications and improve acute myeloid leukemia (AML) treatment outcomes. In this study, we investigated the impact of (7+3) chemotherapy protocol on the expression of CXCR4 and its related ligand CXCL12.
Method: In this case-control study, specimens were collected before and after the first cycle of chemotherapy of AML-M4 and AML-M5 patients. Reverse transcription polymerase chain reaction (RT-PCR) and flow cytometry techniques tested the CXCR4 expression. ELISA was used for measuring the serum level of CXCL12. Two samples, t-test and paired t-test, were utilized for data analysis.
Results: We found that CXCR4 expression by lymphocyte cells after chemotherapy was approximately similar to the CXCR4 expression in the healthy subjects. Moreover, CXCR4 expression was high prior to chemotherapy. The serum level of CXCL12 considerably increased in the patients before chemotherapy. However, after chemotherapy, CXCL12 was found to reach the baseline level in comparison to the healthy control group.
Conclusion: The (7+3) current chemotherapy inhibited CXCL12. Therefore, controlling chemokines along with chemotherapy in AML patients might be conducive to the treatment process or even prevent the relapse of the disease.

Keywords

How to cite this article:

Yazdani B, Mousavi Z, Ehsan M, Kalantary Khandany B, Hassanshahi G. Does the chemotherapy protocol affect CXCL12/CXCR4 axes in acute myeloid leukemia patients with monocytic differentiation? Middle East J Cancer. 2022;13(1):110-9. doi: 10. 30476/mejc.2021.86545.1352.

1.Brenner AK, Reikvam H, Bruserud Ø. A subset of patients with acute myeloid leukemia has leukemia cells characterized by chemokine responsiveness and altered expression of transcriptional as well as angiogenic regulators. Front Immunol. 2016;7:205. doi:10.3389/fimmu.2016.00205.
2. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A, et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med. 2003;9(9):1158-65. doi:10.1038/ nm909.
3. Estey E, Döhner H. Acute myeloid leukaemia. Lancet. 2006;368(9550):1894-907. doi:10.1016/S0140-6736(06)69780-8.
4. Khorramdelazad H, Mortazavi Y, Momeni M, Arababadi MK, Khandany BK, Moogooei M, et al. Lack of correlation between the CCR5-Delta32 mutation and acute myeloid leukemia in Iranian patients. Indian J Hematol Blood Transfus. 2015;31(1): 29-31. doi:10.1007/s12288-014-0408-y.
5. Kupsa T, Horacek JM, Jebavy L. The role of cytokines in acute myeloid leukemia: a systematic review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2012;156(4):291-301. doi:10.5507/bp.2012. 108.
6. Kornblau SM, McCue D, Singh N, Chen W, Estrov Z, Coombes KR. Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood. 2010;116(20): 4251-61. doi: 10.1182/blood-2010-01-262071.
7. Nazari A, Khorramdelazad H, Hassanshahi G. Correction to: Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. Int J Clin Oncol. 2018;23(4):799. doi: 10.1007/s10147-018-1257-8.
8. Pavlasova G, Borsky M, Seda V, Cerna K, Osickova J, Doubek M, et al. Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis. Blood. 2016;128(12):1609-13. doi: 10.1182/blood-2016-04-709519.
9. De Filippo K, Rankin SM. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur J Clin Invest. 2018;48 Suppl 2(Suppl Suppl 2):e12949. doi:10.1111/eci.12949.
10. Faaij CM, Willemze AJ, Revesz T, Balzarolo M, Tensen CP, Hoogeboom M, et al. Chemokine/chemokine receptor interactions in extramedullary leukaemia of the skin in childhood AML: differential roles for CCR2, CCR5, CXCR4 and CXCR7. Pediatr Blood Cancer. 2010;55(2):344-8. doi: 10.1002/pbc.22500.
11. Ma Y, Adjemian S, Galluzzi L, Zitvogel L, Kroemer G. Chemokines and chemokine receptors required for optimal responses to anticancer chemotherapy. Oncoimmunology. 2014;3(1):e27663. doi:10.4161/ onci.27663.
12. Cao T, Ye Y, Liao H, Shuai X, Jin Y, Su J, et al. Relationship between CXC chemokine receptor 4 expression and prognostic significance in acute myeloid leukemia. Medicine. 2019;98(23):e15948. doi: 10.1097/MD.0000000000015948.
13. Bae MH, Oh SH, Park CJ, Lee BR, Kim YJ, Cho YU, et al. VLA-4 and CXCR4 expression levels show contrasting prognostic impact (favorable and unfavorable, respectively) in acute myeloid leukemia. Ann Hematol. 2015;94(10):1631-8. doi: 10.1007/ s00277-015-2442-8.
14. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. 2009;113(24): 6206-14. doi: 10.1182/blood-2008-06-162123.
15.Yazdani Z, Mousavi Z, Moradabadi A, Hassanshahi G. Significance of CXCL12/CXCR4 ligand/receptor axis in various aspects of acute myeloid leukemia. Cancer Manag Res. 2020;12:2155-65. doi: 10.2147/ CMAR.S234883.
16.Pehlivan FS, Sivrikoz ON, Dag F, Kececi SD, Sanal SM. Distribution of CXCR4 and tumour-infiltrating lymphocytes in breast cancer subtypes; their relationship with each other, axillary lymph node involvement, and other prognostic indicators. Pol J Pathol. 2018;69(4):335-41. doi: 10.5114/pjp.2018. 81692.
17.Goswami M, Prince G, Biancotto A, Moir S, Kardava L, Santich BH, et al. Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy. J Transl Med. 2017;15(1):155. doi:10.1186/s12967-017-1252-2.
18. Corazza F, Hermans C, Ferster A, Fondu P, Demulder A, Sariban E. Bone marrow stroma damage induced by chemotherapy for acute lymphoblastic leukemia in children. Pediatr Res. 2004;55(1):152-8. doi:10.1203/01.PDR.0000099773.71438.91.
19. Edwardson DW, Parissenti AM, Kovala AT. Chemotherapy and inflammatory cytokine signalling in cancer cells and the tumour microenvironment. Adv Exp Med Biol. 2019;1152:173-215. doi:10.1007/978-3-030-20301-6_9.
20. Yazdani Z, Mousavi Z, Ghasemimehr N, Kalantary Khandany B, Nikbakht R, Jafari E, et al. Differential regulatory effects of chemotherapeutic protocol on CCL3_CCL4_CCL5/CCR5 axes in acute myeloid leukemia patients with monocytic lineage. Life Sci. 2019;240:117071. doi: 10.1016/j.lfs.2019.117071.
21. Mannelli F, Cutini I, Gianfaldoni G, Bencini S, Scappini B, Pancani F, et al. CXCR4 expression accounts for clinical phenotype and outcome in acute myeloid leukemia. Cytometry B Clin Cytom. 2014;86(5):340-9. doi: 10.1002/cyto.b.21156.
22. Kim CH, Broxmeyer HE. In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood. 1998;91(1):100-10.
23. Schelker RC, Iberl S, Muller G, Hart C, Herr W, Grassinger J. TGF-beta1 and CXCL12 modulate proliferation and chemotherapy sensitivity of acute myeloid leukemia cells co-cultured with multipotent mesenchymal stromal cells. Hematology. 2018;23(6):337-45. doi: 10.1080/10245332.2017. 1402455.
24. Eckert F, Schilbach K, Klumpp L, Bardoscia L, Sezgin EC, Schwab M, et al. Potential role of CXCR4 targeting in the context of radiotherapy and immunotherapy of cancer. Front Immunol. 2018;9: 3018. doi: 10.3389/fimmu.2018.03018.
25. Chen J, Yang N, Liu H, Yao H, Wang J, Yang Y, et al. Immunological effects of a low-dose cytarabine, aclarubicin and granulocyte-colony stimulating factor priming regimen on a mouse leukemia model. Oncol Lett. 2018;16(3):3022-8. doi: 10.3892/ol.2018.9018.