Document Type : Original Article(s)

Authors

1 Department of Pathology, Assiut University, Assiut, Egypt

2 Department of Radiotherapy and Nuclear Medicine, South Egypt Cancer Institute, Assiut University, Assiut, Egypt

3 Department of Medical Oncology and Hematological Malignancy, South Egypt Cancer Institute, Assiut University, Assiut, Egypt

Abstract

Background: Tumor microenvironment, specifically tumor-associated macrophages, plays an important role in tumor initiation and progression. CD163 has been recognized as a valuable specific macrophage marker. Cyclooxygenase-2 (Cox2) plays a role in tumor progression. CD31 is reliable for estimation of the density of microvesseles (MVD), which has prognostic importance in several malignant tumors. Thus, the current study was conducted to test the association between CD163, Cox2, and CD31 expression with the prognosis of classical Hodgkin lymphoma (cHL) patients and their potential correlation with clinicopathological variables.
Method: CD163, Cox2, and CD31 expressions were examined in newly diagnosed patients with cHL through immunohistochemistry on tissue biopsy and the results were correlated with the patients’ outcome after the median follow-up, which was about 35 months.
Results: 104 patients were included in this study. High CD163 was found in 32.7% of the patients. Cox2 was positive in 42.3% of them. CD 31 with high MVD (≥10%) was found in 51% of the subjects. A significant association was detected between CD163 and Cox2 with tumor stage (P = 0.001, and P = 0.001) and IPS score. Regarding CD31, we could not find any significant associations with disease parameters, except with histological subtype (P = 0.001). A significant relationship was observed between Cox2 and CD163 expression and the relapse rate (P = 0.001, P = 0.01, respectively). Regarding survival, only Cox2 showed a significant association with disease-free survival (P = 0.0379).
Conclusion: These findings suggested that Cox2 and CD163 expression can be used as predicator for early relapse and as new therapeutic targets in cHL.

Keywords

How to cite this article:

Makboul R, Refaiy A, Mohamed R, Attia A, Osama D, El Emary AN, et al. Impact of Cox2, CD163, and microvessel density expression on the prediction of relapse and patients’ outcome in classical Hodgkin lymphoma. Middle East J Cancer. 2022;13(2):255- 65. doi: 10.30476/mejc.2021. 87421.1418.

  1. Canioni D, Deau-Fischer B, Taupin P, Ribrag I, Delarue R, Bosq J, et al. Prognostic significance of new immunohistochemical markers in refractory classical Hodgkin lymphoma: a study of 59 cases. PLoS One. 2009; 4 (7): 6341-8. doi: 10.1371/journal.pone.0006341.
  2. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953-64.
  3. Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity. 2005;23(4):344-50.
  4. Pham LV, Pogue E, Ford RJ. The role of macrophage/B-Cell interactions in the Pathophysiology of B-Cell lymphomas. Front Oncol. 2018;8:147. doi:10.3389/fonc.2018.00147.
  5. Sica A, Erreni M, Allavena P. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72(21):4111-26. doi: 10.1007/s00018-015-1995-y.
  6. Gandhi J, Khera L, Gaur N, Paul C, Kaul R. Role of modulator of inflammation cyclooxygenase-2 in gammaherpesvirus mediated tumorigenesis. Front Microbiol. 2017; 8:538-12. doi:10.3389/fmicb.2017.00538.
  7. Korkolopoulou P, Thymara I, Kavantzas N, Vassilakopoulos TP, Angelopoulou MK, Kokoris SI, et al. Angiogenesis in Hodgkin's lymphoma: a morphometric approach in 286 patients with prognostic implications. Leukemia. 2005; 19:894-900. doi: 10.1038/sj.leu.2403690.
  8. Tilley S, Coffman T, Koller B. Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J Clin Invest. 2001; 108(1):15-23. doi: 10.1172/JCI13416.
  9. Ohsawa M, Fukushima H, Ikura Y, Inoue T, Shirai N, Sugama Y, et al. Expression of cyclooxygenase-2 in Hodgkin's lymphoma: its role in cell proliferation and angiogenesis. Leuk Lymphoma. 2006;47(9):1863-71. doi: 10.1080/10428190600685442.
  10. Jacoby RF, Seibert K, Cole CE, Kelloff G, Lubet RA. The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res. 2000;60(18):5040-4.
  11. Half E, Tang XM, Gwyn K, Sahin A, Wathen K, Sinicrope FA. Cyclooxygenase-2 expression in human breast cancers and adjacent ductal carcinoma in situ. Cancer Res. 2002 ;62(6):1676-81.
  12. Lee JS, Choi YD, Lee JH, Nam JH, Choi CH, Lee M, et al. Expression of cyclooxygenase-2 in adenocarcinomas of the uterine cervix and its relation to
    angiogenesis and tumor growth. Gynecol Oncol. 2004;95(3):523-9. doi:10.1016/j.ygyno.2004.08.036.
  13. Yao M, Zhou W, Sangha S, Albert A, Chang AJ, Liu TC, et al. Effects of nonselective cyclooxygenase inhibition with low-dose ibuprofen on tumor growth, angiogenesis, metastasis, and survival in a mouse model of colorectal cancer. Clin Cancer Res. 2005;11(4):1618-28. doi:10.1158/1078-0432.CCR-04-1696.
  14. Montanari F, Diefenbach C. Hodgkin lymphoma: targeting the tumor microenvironment as a therapeutic strategy. Clin Adv Hematol Oncol. 2015;13(8):518-24.
  15. Kamper P, Bendix K, Hamilton-Dutoit S, Honoré B, Nyengaard JR, d'Amore F. Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein-Barr virus status in classical Hodgkin's lymphoma. Haematologica. 2011; 96(2):269-76. doi:10.3324/haematol.2010.031542.
  16. Barisik ON, Suheyla Bozkurt S, Gumus M , Kaygusuz I, Nimet Karadayi N, Bas E, et al. Expression and prognostic significance of Cox-2 and p-53 in Hodgkin lymphomas: a retrospective study. Diagn Pathol. 2010;5:19. doi: 10.1186/1746-1596-5-19.
  17. Kaplan E, Meier P. Nonparametric estimation from incomplete observations. J Am Stat
    1954;53(282):457-81.
  18. von Tresckow B, Engert A. Refractory Hodgkin lymphoma. Curr Opin Oncol. 2013;25(5):463-9. doi: 10.1097/01.cco.0000432524.62475.60.
  19. Raemaekers JM, André MP, Federico M, Girinsky T, Oumedaly R, Ercole Brusamolino E, et al. Omitting radiotherapy in early positron emission tomographynegative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: Clinical results
    of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2014; 32(12):1188-94. doi: 10.1200/JCO.2013.51.9298.
  20. Engert A, Schiller P, Josting A, Herrmann R, Koch P, Sieber M, et al. Involved-field radiotherapy is equally effective and less toxic compared with extended-field radiotherapy after four cycles of chemotherapy in patients with early-stage unfavorable Hodgkin's lymphoma: results of the HD8 trial of the German Hodgkin's Lymphoma Study Group. J Clin Oncol. 2003;21(19):3601-8.
  21. Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, Connors JM, et al. Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17(4):1244. doi:10.1200/JCO.1999.17.4.1244.
  22. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010;116(5):829-40. doi: 10.1182/blood-2009-12-257832 .
  23. Schmidt T, Carmeliet P. Blood-vessel formation: Bridges that guide and unite. Nature. 2010; 465(7299):697-9. doi: 10.1038/465697a.
  24. Esbona K, Yi Y, Saha S, Yu M, Van Doorn RR, Conklin MW, et al. The presence of cyclooxygenase 2, tumorassociated macrophages, and collagen alignment as prognostic markers for invasive breast carcinoma patients. Am J Pathol. 2018;188(3):559-73. doi:
    1016/j.ajpath.2017.10.025.
  25. Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, et al. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol. 2010; 185(1):642-52. doi: 10.4049/jimmunol.1000413.
  26. Al-Salam S, Awwad A, Sudhadevi M, Daoud S, Nagelkerke NJ, Castella A, et al. Epstein-Barr virus infection correlates with the expression of COX-2, p16(INK4A) and p53 in classic Hodgkin lymphoma. Int J Clin Exp Pathol. 2013; 1;6(12):2765-77.
  27. Ahmed H, Raslan W, Deifalla A, Fathallah M. CD163 is a predictive biomarker for prognosis of classical Hodgkin's lymphoma in Saudi patients. Mol Clin Oncol. 2019;11(1):67-76. doi: 10.3892/mco.2019.1850.
  28. Xu X, Li Z, Liu J, Zhu F, Wang Z, Wang J, et al. The prognostic value of tumor-associated macrophages in Non-Hodgkin's Lymphoma: A systematic review and
    meta-analysis. Scand J Immunol. 2020;91(1):e12814. doi: 10.1111/sji.12814.
  29. Kayal S, Mathur S, Karak AK, Kumar L, Sharma A, Bakhshi S, et al. CD68 tumor-associated macrophage marker is not prognostic of clinical outcome in classical Hodgkin lymphoma. Leuk Lymphoma. 2014;55(5):1031-7. doi: 10.3109/10428194.2013.
  30. Azambuja D, Natkunam Y, Biasoli I, Lossos IS, Anderson MW, Morais JC, et al. Lack of association of tumor-associated macrophages with clinical outcome in patients with classical Hodgkin's lymphoma. Ann Oncol. 2012;23(3):736-42. doi: 10.1093/annonc/
  31. Koh YW, Park CS, Yoon DH, Suh C, Huh J. CD163 expression was associated with angiogenesis and shortened survival in patients with uniformly treated classical Hodgkin lymphoma. PLoS One. 2014;9(1):e87066. doi: 10.1371/journal.pone.0087066.
  32. Kimura YN, Watari K, Fotovati A, Hosoi F, Yasumoto K, Izumi H, et al. Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis. Cancer Sci. 2007;98(12):2009-18.
  33. Panico L, Ronconi F, Lepore M, Tenneriello V, Cantore N, Dell'Angelo AC, et al. Prognostic role of tumorassociated macrophages and angiogenesis in classical Hodgkin lymphoma. Leuk Lymphoma. 2013;54(11):2418-25. doi: 10.3109/10428194.2013.778405.
  34. Koh YW, Park C, Yoon D, Suh C, Huh J. Prognostic significance of COX-2 expression and correlation with Bcl-2 and VEGF expression, microvessel density, and clinical variables in classical Hodgkin lymphoma. Am J Surg Pathol. 2013; 37(8):1242-51. doi:
    1097/PAS.0b013e31828b6ad3.
  35. Na YR, Yoon YN, Son DI, Seok SH. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model. PLoS One. 2013;8 (5): 63451-11. doi:10.1371/journal.pone.0063451.
  36. Nakanishi Y, Nakatsuji M, Seno H, Ishizu S, Akitake-Kawano R, Kanda K, et al. COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis. 2011;32(9):1333-9. doi:10.1093/carcin/bgr128.
  37. Ohsawa M, Fukushima H, Ikura Y, Inoue T, Shirai N, Sugama Y, et al. Expression of cyclooxygenase-2 in Hodgkin's lymphoma: its role in cell proliferation and angiogenesis. Leuk Lymphoma. 2006;47(9):1863-71.
  38. Mestre F, Gutierrez A, Ramos R, Martinez-Serra J, Sánchez L, Matheu G, et al. Expression of COX-2 on Reed-Sternberg cells is an independent unfavorable prognostic factor in Hodgkin lymphoma treated with ABVD. Blood. 2012;119(25):6072-9. doi: 10.1182/blood-2011-11-394627.
  39. Shi Y, Gao Z, Liu C, Huang X, Song Y, Ping L, et al. Expression and prognostic value of COX- 2, p16(INK4A) and p53 in patients with classical Hodgkin lymphoma. [Article in Chinese] Zhonghua Xue Ye Xue Za Zhi. 2015;36(11):926-32. doi:10.3760/cma.j.issn.0253-2727.2015.11.008.