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Abstract  
Background: Paclitaxel is widely used as an adjuvant therapy in the treatment of 

breast cancer, yet its effectiveness decreases due to resistance problems. We conducted 
the present study to identify the potential paclitaxel resistance biomarkers and therapeutic 
targets in breast cancer employing bioinformatics approach.  

Method: The present systematic bioinformatic study included a microarray data 
obtained from Gene Expression Omnibus database, which are respectively cell lines 
and tumor data from patients. We carried out Gene ontology, Kyoto Encyclopedia 
Genes, and Genome pathway enrichment analysis with The Database for Annotation, 
Visualization and Integrated. The protein-protein interaction network was analyzed 
with STRING-DB and visualized with Cytoscape. We confirmed of the reliability of 
the hub genes in paclitaxel sensitive and resistant breast cancer cells utilizing 
ONCOMINE. The prognostic value of the hub genes was evaluated using Kaplan-
Meier survival curves.  

Results: Gene ontology analysis revealed that differential expressed genes take 
part in cell adhesion, located in cellular component and paly a negative role in the 
regulation of reactive oxygen species. The protein-protein interaction network analysis, 
confirmed with ONCOMINE and Kaplan Meier survival, revealed three hub genes 
(TIMP1, HK2, and IGFBP7). Kyoto Encyclopedia Genes and Genome pathway 
enrichment analysis revealed the regulation of HIF-1 signaling pathway. Kaplan Meier 
survival plot showed that patients with high mRNA of TIMP1, HK2, and IGFBP7 
had significantly worse overall survival than those in the low expression level group.  

Conclusion: TIMP1, HK2, and IGFBP7 are not only biomarkers, but also potential 
targets to circumvent paclitaxel resistance in breast cancer.  
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Introduction 

Paclitaxel is widely used as a first-line 
chemotherapy for the treatment of breast cancer. 
However, high frequencies of recurrence and 
progression in treated patients indicate that 
metastatic breast cancer cells can become resistant 
against this drug.1 Response rate to paclitaxel 
among breast cancer patients resides in a loose 
range of 10-60%.2 Accordingly, understanding 
molecular mechanism and discovery of paclitaxel 
resistance is of great importance to achieve better 
efficacy of the treatment. In order to overcome 
paclitaxel resistance in breast cancer, a lot of 
studies have been conducted on biomarker using 
several types of breast cancer cells. Studies using 
MCF-7 luminal A breast cancer cells revealed 
several regulatory genes and biomarkers in 
paclitaxel resistance including RDC1, IFI-30, 
FURIN, BCL2, S100P, CAV1 and MC,3 MDR1,4 
TRIP6, HSP27 and cathepsin D,5 ABCB1,6 and 
miR-451 and YWHAZ7 play a role in the 
mechanisms of paclitaxel resistance in MDA-
MB 231 triple negative breast cancer cells. In 
addition, cellular senescence and cytoprotective 
autophagy are potential mechanisms of paclitaxel 
chemoresistance in the triple negative breast 
cancer.8 A comprehensive cohort study on breast 
cancer patients demonstrated that multiple tran-
scriptional fusions of MDR1 is observed in 
paclitaxel resistant breast cancer cells.9 Moreover, 
a recent bioinformatics study explored gene 
expression-based predictive markers for paclitaxel 
treatment in ER+ and ER- breast cancer.2 
Altogether, previous studies on paclitaxel-
resistance biomarkers have been done using 
paclitaxel treated resistant cell line and patient 
data, whose results are very diverse; and thus, 
could not be employed for paclitaxel resistance 
cases in general. A review article showed that 
there are no valid practical biomarkers to predict 
the occurrence of paclitaxel resistance in breast 
cancer; and therefore, several biomarkers are 
needed to estimate paclitaxel chemoristance.10 
In this study, we used a bioinformatics approach 
to investigate the general biomarkers from a broad 
characteristics of samples utilizing both cell lines 

and patients’ data. We also validated the expression 
of biomarker candidate with Oncomine database 
and the overall survival related to the level of 
expression of these genes. Thus, in this study, 
we found biomarker properties that can be used 
generally for diagnostic and prognostic of 
paclitaxel resistance in breast cancer (TIMP1, 
HK2 and IGFBP7). Additionally, these three 
biomarkers could also be applied as drug target 
including gene therapy, monoclonal antibody, 
enzyme inhibitor, and therapeutic protein.  

 
Material and Methods 

Data collection and processing  
The present systematic bioinformatics study 

included a microarray data obtained from Gene 
Expression Omnibus (GEO) database 
GSE1279111 and GSE2279612 (Table 1). We 
conducted the data processing with GEO2R, an 
online tool for GEO data analysis based on R 
programming language. DEGs between paclitaxel 
sensitive and resistant cells/tissues were screened. 
Adjusted P value <0.05 and IFCI >1.5 were used 
to select significant DEGs. We utilized Venny 
2.1 to design a venn diagram in order to identify 
differentially expressed genes (DEGs) from two 
mRNA expression profile GSE12791 and 
GSE22796.13  
Analysis of protein-protein interaction network 
and hub genes selection 

Analysis of protein-protein interaction (PPI) 
network was constructed with STRING-DB 
v11.014 with confidence scores of >0.4 and was 
visualized with Cytoscape software.15 Genes with 
a degree over 5, analyzed with CytoHubba 
plugin,16 were selected as hub genes.  
Gene ontology analysis, Kyoto encyclopedia 
genes, and genome (KEGG) pathway enrichment 

Analysis of gene ontology (GO), Kyoto 
encyclopedia of genes, and genomes (KEGG) 
pathway enrichment were conducted with the 
database for annotation, visualization and 
integrated discovery (DAVID) v6.8,17 and P<0.05 
was selected as the cut-off value.  
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Validation of hub genes in paclitaxel resistant 
and sensitive breast cancer cells  

We confirmed the reliability of the hub genes 
in paclitaxel sensitive and resistant breast cancer 
cells using ONCOMINE, a cancer microarray 
database and web-based data-mining platform.18  
Kaplan Meier survival analysis  

We evaluated the prognostic value of the hub 
genes employing Kaplan-Meier survival curves 
with log-rank test,19 and P<0.05 was selected as 
the cut-off value.  

 
 
 
 

Results  

Identification of DEGs in paclitaxel resistant 
breast cancer  

A total of 545 and 646 up-regulated genes 
were extracted from GSE12791 and GSE22796, 
respectively (Figure 1A). In addition, a total of 
683 and 826 down-regulated genes were extracted 
from GSE12791 and GSE22796, respectively 
(Figure 1B). There were 85 genes consistently 
differentially expressed in the two datasets, 
consisting of 37 up-regulated and 48 down-
regulated genes (Figure 1A-B).  
Analysis of protein-protein interaction network 
and hub genes  

A total of 85 genes were constructed to PPI 

Figure 1. Venn diagram of (A) upregulated and (B) downregulated DEGs obtained from GSE12791 and GSE22796. 
DEGs: Differentially expressed genes, GSE: GEO (Gene expression omnibus) series 

Table 1. Description of GSE datasets 
Accession No. Description References 

GSE12791 MDA-MB-231 cells (parental, n=4) were treated Luo W, et al.11 
to regimen dose: 3-day treatment with 30 nM  
paclitaxel and followed by a 7-day recovery to  
generated paclitaxel resistant MDA-MB-231  
cells (MDA-PR, n=4). The resistant cells were  
established within 8 cycles of such treatment  
(80 days). 

 
GSE22796 Patients with residual invasive carcinoma Tan MH, et al.12

following taxane-based chemotherapy (n=8)  
and  the corresponding histologically benign  
breast tissue from 5 of the same 8 patients with  
post-therapy residual breast cancer was used as controls 

GSE: GEO (Gene expression omnibus) series 
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network complex containing 85 nodes and 82 
edges, with an average node degree of 1.93 (Figure 
2A). The five genes with degrees over 5 were 
identified as hub genes (APP, TIMP1, CTGF, 
HK2 and IGFBP7) (Figure 2B, Table 2).  
Gene ontology analysis and KEGG pathway 
enrichment of the hub genes 

Gene ontology analysis of the hub genes 
illustrated that the hub genes regulate the 
biological process of regulation of cell growth 

and cell adhesion, located in extracellular 5 space, 
proteinaceous extracellular matrix, extracellular 
exosome, and golgi apparatus. They were also 
found to take part in the molecular function of 
heparin binding (Table 3). Moreover, KEGG 
pathway enrichment analysis revealed the 
regulation of HIF-1 signaling pathway by the 
hub genes (Table 4).  
 
 

Figure 2. (A). Protein-protein interaction (PPI) network complex of DEGs, as analyzed with Cytoscape, (B) one cluster with the highest 
degree score, as analyzed with Cytohubba.  
DEGs: Differentially expressed genes 

Table 2. The hub genes identified in PPI Network as possessing > 5 degrees 
Gene Symbol Full Name Description Degrees 

APP Amyloid beta precursor protein Up-regulated 12 
TIMP1 TIMP metallopeptidase inhibitor 1 Up-regulated 11 
CTGF Connective tissue growth factor Up-regulated 10 
HK2 Hexokinase 2 Down-regulated 6  
IGFBP7 Insulin like growth factor binding protein 7 Up-regulated 6 
PPI : Protein-protein interaction 
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Validation of hub genes in paclitaxel resistant 
and sensitive breast cancer cells  

We utilized Oncomine to confirm the reliability 
of the hub genes in paclitaxel sensitivity. A study 
by Lee et al., using cell lines, showed an up-
regulation of APP, TIMP1, CCN2, and IGFBP7 
(Figure 3) in paclitaxel resistant cells. A study 

by Gyorffy, using cell lines, indicated a down-
regulation of HK2 in paclitaxel resistant cells 
(Figure 3).  
Kaplan Meier survival analysis  

We obtained Kaplan Meier plot for overall 
survival of breast cancer patients according to 
the low and high expression levels of each gene. 

Table 3. The enriched gene ontology terms of the hub genes 
Category Term Count         P Value      Genes 

Molecular function GO:0008201~heparin binding      2 0.014750452.     APP, CTGF 
Cellular component GO:0005615~extracellular space      3 0.009849658      APP, IGFBP7, TIMP1 
Cellular component GO:0005578~proteinaceous      2 0.034513946     CTGF, TIMP1 

extracellular matrix 
Cellular component GO:0070062~extracellular exosome    3 0.061069157     APP, IGFBP7, TIMP1 
Cellular component GO:0005794~Golgi apparatus      2 0.098126309     APP, CTGF 
Biological Process GO:0001558~regulation of cell growth      2 0.006802698     CTGF, IGFBP7 
Biological Process GO:0007155~cell adhesion     2 0.033942964     CTGF, IGFBP7 
GO: Gene ontology, APP: Amyloid beta precursor protein, TIMP1:TIMP metallopeptidase inhibitor 1, CTGF: Connective tissue growth factor, IGFBP7: Insulin like growth 
factor binding protein 7 

Figure 3. Expression of APP, TIMP1, CTGF, HK2, and IGFBP7 in paclitaxel-resistant and sensitive breast cancer cells, as analyzed 
with Oncomine.  
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The results revealed that patients with high mRNA 
level of TIMP1, HK2 and IGFBP7 had 
significantly worse overall survival compared 
with those in the low expression level group, 
with P= 0.041, P=4.4e-6 and P=0.026, 
respectively (Figure 4). 

                        
Discussion  

This present study identified the candidates 
for biomarker of paclitaxel resistance in breast 
cancer using bioinformatics approaches. We 
expected to obtain chemoresistance markers from 
various types of breast cancer as well as molecular 
targets to overcome paclitaxel resistance in breast 
cancer. Based on the PPI network complex, 
ONCOMINE, and Kaplan meier survival analysis, 
three genes were selected as the potential 
biomarkers and therapeutic targets candidate of 
paclitaxel resistance (TIMP1, HK2, and IGFBP7). 
TIMP1 encodes TIMP metallopeptidase inhibitor 
1,20 the key regulator of the metalloproteinases, 
which degrades the extracellular matrix and sheds 
cell surface molecules.21 The overexpression of 
TIMP1 is attributed to anthracyclin resistance in 
breast cancer.22 The high expression of TIMP1 
in serum is assigned to progression and worse 
survival in gastric cancer patients.23 Several studies 
have demonstrated targeting TIMP1, including 

gene therapy using adenoviral vector24 and 
TIMP1 blocking antibody in human dermal 
microvascular endothelial cells.25 Therefore, the 
development of targeted therapy against TIMP1 
needs to be further explored to overcome paclitaxel 
resistance in breast cancer. HK2 encodes 
hexokinase 2, a key enzyme and the first rate-
limiting enzyme of glycolysis.26 Cancer cells 
show deregulation of cellular energy from 
oxidative phosphorylation to aerobic glycolysis 
known as Warburg effect.27 HK2 is overexpressed 
in many human cancers and correlates with 
chemoresistance and poor prognosis of brain 
metastasis of breast cancer patients28 and 
neuroblastoma patients.29 HK2 also promotes 
ovarian cancer cells to cisplatin30 and paclitaxel.31 

In addition, paclitaxel resistance in breast cancer 
is regulated by PIM2-mediated phosphorylation 
of hexokinase 2.32 Accordingly, HK2 is an 
important target for overcoming paclitaxel 
resistance in breast cancer. Some studies have 
developed HK2-targeted therapies using HK2 
inhibitors, for instance metformin, 2-
Deoxyglucose, and 3-Bromopyruvate in colon, 
breast, and hepatocellular carcinoma.33,34 
Benserazide, a dopadecarboxylase inhibitor, 
suppresses tumor growth by targeting HK2.34 
Ketoconazole and posaconazole selectively 

Table 4. KEGG pathway of the hub genes 
Pathway           Count    P Value      Genes 
HIF-1 signaling pathway 2 0.043364152 HK2, TIMP1 
KEGG: Kyoto encyclopedia genes and genome, HIF-1: Hypoxia-inducible factor 1, HK2: Hexokinase-2, TIMP1: Metalloproteinase inhibitor 1 

Figure 4. Overall survival of TIMP1, HK2, and IGFBP7 across breast cancer samples, as analyzed with KM plotter. 
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eradicates HK2-expressing glioblastoma cells.35 
Accordingly, further study is needed on the 
development of the above-mentioned compounds 
in order to overcome paclitaxel chemoresistance 
in breast cancer patients. IGFBP7 encodes Insulin-
like growth factor (IGF) binding protein 7, a 
member of IGFBP, which protects IGFs from 
degradation in circulation by forming a high 
affinity complex.36 Binding of IGFs to IGFBPs 
might inhibit the interaction between the IGFs 
and their receptor, IGFRs.37 Regarding the role 
of IGFBP7 in chemoresistance, the overexpression 
of IGFBP7 is attributed to the resistance against 
vincristine, etoposide, and asparaginase and 
negative outcome in Jurkat adult T-cell acute 
lymphoblastic leukemia cells.38 In addition, the 
overexpression of IGFBP7 or administration of 
recombinant human IGFBP7 (rhIGFBP7) resulted 
in an increased doxorubicin and cytarabine 
sensitivity of primary acute myeloid leukemia 
cells.39 Accordingly, IGFBP7 could be utilized 
to increase the sensitivity of breast cancer cells 
to paclitaxel. KEGG pathway enrichment analysis 
revealed the regulation of HIF-1 signaling pathway 
by TIMP1 and HK2. Hypoxia-inducible factor-
1alpha (HIF-1alpha), a transcription factor induced 
by low oxygen concentration and overexpression 
of malignant solid tumors,40 promotes the 
overexpression and activity of several glycolytic 
transporters, such as GLUT1, GLUT3, and 
enzymes, for instance HK1, HK2, and PFK-L.40 
In addition, the activation of HIF-1 signaling 
pathway was found to promote chemoresistance 
in MDA-MB-231 breast cancer cells.41 Previous 
studies have demonstrated the axis between 
TIMP1, HK2, and HIF signaling pathways. The 
combinatorial treatment of polydatin and 2-deoxy-
d-glucose in breast cancer cells enhances cell death 
by targeting the ROS/PI3K/AKT/HIF-1α/HK2 
axis.42 TIMP1 expression is regulated by HIF1 
in vascularization43 and liver metastasis.44 
Moreover, the treatment of recombinant human 
rhTIMP-1 promotes cell survival and increases 
mRNA level of HIF1 α in acute myeloid leukemia 
cells.45 In the signaling regulation of thyroid 
carcinogenesis, knockdown of STAT3 increases 
the expression of HIF α and the down-regulation 

of IGFBP7.46 However, the relations between 
HIF and IGFBP7 remain elusive and need to be 
further clarified. Accordingly, further studies 
could be suggested on HIF-1 signaling in 
paclitaxel resistance in breast cancer. 

Paclitaxel resistance in luminal A and triple 
negative breast cancer are associated with 
switching the mechanism from apoptotic to 
autophagic cell death,47 cellular senescence and 
cytoprotective autophagy.8 The inhibitors of HIF-
1 may impair the metabolic flexibility of cancer 
cells and make them more sensitive to anticancer 
drugs.48 This work shed light to the fact that HK2, 
IGFBP7, and TIMP1 are biomarker candidates 
of paclitaxel resistance, which involve in the HIF 
signaling. The increased expression of TIMP1 is 
observed in senescence fibroblast.49 HK2 regulates 
autophagy induced by glucose starvation.50 IGFBP 
7 promotes senescence in mesenchymal stem 
cells.51,52 In sum, further study is required on 
senescence and autophagy mechanism related to 
TIMP1, HK2, IGFBP7, and paclitaxel resistance. 
The current research had several limitations, 
including the mRNA data used for the PPI 
network. This might give different results since 
the expression of mRNA is not always correlated 
to the protein level. In this study, we also employed 
bioinformatics approaches; therefore, further 
studies are needed to validate the biomarker as 
well as the molecular target in order to overcome 
paclitaxel resistance in breast cancer.  

 
Conclusion  

In conclusion, the present paper not only 
explored potential targets to circumvent breast 
cancer resistance to paclitaxel, but also provided 
novel approaches to cancer therapeutics in terms 
of overcoming paclitaxel resistance in breast 
cancer. HIF-1 signaling pathway plays a pivotal 
role in breast cancer resistance to paclitaxel. More 
importantly, TIMP1, HK2, and IGFBP7 are not 
only biomarker candidates for paclitaxel 
resistance, but also potential targets to circumvent 
paclitaxel resistance in breast cancer patients. 
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