Document Type : Original Article(s)

Authors

1 Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt

2 Department of Radiation Therapy, Children Cancer Hospital 57357, Cairo, Egypt

3 Clinical Oncology Department, Faculty of Medicine, University of Aswan, Aswan, Egypt

10.30476/mejc.2023.97547.1866

Abstract

Background: This study aims to evaluate the interchangeability between cone beam computed tomography (CBCT) and the optical surface scanning system (Catalyst) for daily positioning during radiation therapy in head and neck cancer patients.
Method: This study was designed as a prospective observational descriptive study divided into two parts. The first part involved a phantom study using the computerized imaging reference systems (CIRS) child atom phantom. It aimed to detect deviations in patient position across six degrees of freedom (lateral, longitudinal, vertical, rotation, roll, and pitch) using the optical light scanner and Catalyst and compare them with deviations detected by CBCT in the same treatment sessions. The second part included 252 sessions, during which 30 head and neck cancer patients were treated at Children Cancer Hospital 57357, Egypt, using both Catalyst and CBCT for setup treatment positioning.
Results: The differences between CBCT and Catalyst in all six degrees of deviation were not statistically significant (lateral (P = 0.175), longitudinal (P = 0.296), vertical (P = 0.110), rotation (P = 0.936), roll (P = 0.527), and pitch (P = 0.270)).
Conclusion: The optical light scanner system Catalyst is comparable to CBCT. Surface scanning (Catalyst) has proven reliable and feasible for daily patient positioning, with the advantage of avoiding daily exposure to additional radiation.

Keywords

Main Subjects

How to cite this article:

Hewala TI, Fahmy MA, El- Benhawy SA, Ammar HM. Evaluation of the interchangeability of cone beam computed tomography and catalyst for patient positioning in radiotherapy for head and neck cancer patients. Middle East J Cancer. 2024;15(2):128-35. doi:10.30476/mejc.2023.97547.1866.

  1. Goyal S, Kataria T. Image guidance in radiation therapy: techniques and applications. Radiol Res Pract. 2014;2014:705604. doi: 10.1155/2014/705604.
  2. Yan G, Mittauer K, Huang Y, Lu B, Liu C, Li JG. Prevention of gross setup errors in radiotherapy with an efficient automatic patient safety system. J Appl Clin Med Phys. 2013;14(6):4543. doi: 10.1120/jacmp.v14i6.4543.
  3. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108. doi: 10.3322/caac.21262.
  4. Schneider U, Hälg R, Besserer J. Concept for quantifying the dose from image guided radiotherapy. Radiat Oncol. 2015;10:188. doi: 10.1186/s13014-015-0492-7.
  5. Dang A, Kupelian PA, Cao M, Agazaryan N, Kishan AU. Image-guided radiotherapy for prostate cancer. Transl Androl Urol. 2018;7(3):308-20. doi: 10.21037/tau.2017.12.37.
  6. Walter F, Freislederer P, Belka C, Heinz C, Söhn M, Roeder F. Evaluation of daily patient positioning for radiotherapy with a commercial 3D surface-imaging system (Catalyst™). Radiat Oncol. 2016;11(1):154. doi: 10.1186/s13014-016-0728-1.
  7. Mututantri-Bastiyange D, Chow J. Imaging dose of cone-beam computed tomography in nanoparticle-enhanced image-guided radiotherapy: A Monte Carlo phantom study. AIMS Bioengineering. 2020;7(1):1-11. doi: 10.3934/bioeng.2020001.
  8. De Los Santos J, Popple R, Agazaryan N, Bayouth JE, Bissonnette JP, Bucci MK, et al. Image guided radiation therapy (IGRT) technologies for radiation therapy localization and delivery. Int J Radiat Oncol Biol Phys. 2013;87(1):33-45. doi: 10.1016/j.ijrobp.2013.02.021.
  9. Katsanos K, Kitrou P, Spiliopoulos S, Maroulis I, Petsas T, Karnabatidis D. Comparative effectiveness of different transarterial embolization therapies alone or in combination with local ablative or adjuvant systemic treatments for unresectable hepatocellular carcinoma: A network meta-analysis of randomized controlled trials. PLoS One. 2017;12(9):e0184597. doi: 10.1371/journal.pone.0184597.
  10. Wiersma RD, Tomarken SL, Grelewicz Z, Belcher AH, Kang H. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking. Med Phys. 2013;40(11):111712. doi: 10.1118/1.4823757.
  11. Stanley DN, McConnell KA, Kirby N, Gutiérrez AN, Papanikolaou N, Rasmussen K. Comparison of initial patient setup accuracy between surface imaging and three point localization: A retrospective analysis. J Appl Clin Med Phys. 2017;18(6):58-61. doi: 10.1002/acm2.12183.
  12. Carl G, Reitz D, Schönecker S, Pazos M, Freislederer P, Reiner M, et al. Optical surface scanning for patient positioning in radiation therapy: a prospective analysis of 1902 fractions. Technol Cancer Res Treat. 2018;17:1533033818806002. doi: 10.1177/1533033818806002.
  13. Ma Z, Zhang W, Su Y, Liu P, Pan Y, Zhang G, et al. Optical surface management system for patient positioning in interfractional breast cancer radiotherapy. Biomed Res Int. 2018;2018:6415497. doi: 10.1155/2018/6415497.
  14. Wikström K, Nilsson K, Isacsson U, Ahnesjö A. A comparison of patient position displacements from body surface laser scanning and cone beam CT bone registrations for radiotherapy of pelvic targets. Acta Oncol. 2014;53(2):268-77. doi: 10.3109/0284186X.2013.802836.
  15. Bekke SN, Andersen CE, Mahmood F, Lindvold LR, McNair HA, Elstrom UV, et al. Evaluation of optical surface scanning of breast cancer patients for improved radiotherapy. Denmark: Lyngby Denmark Technical University; 2018.p.175.
  16. Al-Hallaq HA, Cerviño L, Gutierrez AN, Havnen-Smith A, Higgins SA, Kügele M, et al. AAPM task group report 302: Surface-guided radiotherapy. Med Phys. 2022;49(4):e82-e112. doi: 10.1002/mp.15532.
  17. Liu M, Wei X, Ding Y, Cheng C, Yin W, Chen J, et al. Application of optical laser 3D surface imaging system (Sentinel) in breast cancer radiotherapy. Sci Rep. 2020;10(1):7550. doi: 10.1038/s41598-020-64496-1.