Document Type : Original Article(s)

Authors

1 Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran

2 Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

3 Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Background: Early detection of breast cancer (BC) is extremely important as late diagnosis has been associated with a high rate of mortality. Immunogenic proteins and autoantibodies have been considered as favorable targets for early detection and targeted therapy in cancer. Accordingly, the present study aimed to identify the immunogenic antigens in both early and advanced stages of BC via a serologic proteome analysis (SERPA) approach.
Method: This is a case-control study wherein we separated the proteins from BC tissues in the early stages (n = 10) and advanced stages (n = 10) utilizing two-dimensional electrophoresis (2DE) and then transferred them onto a Polyvinylidene Difluoride (PVDF) membrane. To explore the tumor antigens reacting with antibodies, two-dimensional (2D) blots of tumor tissues in the early and advanced stages were separately probed with the sera from the same patients. Afterwards, we identified antibody-reactive proteins via liquid chromatography with tandem mass spectrometry (LC-MS/MS).
Results: Fibrinogen beta chain (FGB), protein deglycase DJ-1(PARK7), and peroxiredoxin-2 (PRDX2) were the highly reactive antigens identified in the earlystage patients. In addition, RuvB-like1 (RUVBL1) and triose phosphate isomerase (TPI) were recognized as the immune reactive proteins in the late-stage patients.
Conclusion: The results herein revealed that the immune-proteome pattern of BC patients changes along with tumor progression from primary to advanced stages. Moreover, immunogenic proteins seemed to stimulate the humoral immune system to produce autoantibodies in the initiation phase of BC; these autoantibodies could be employed as complementary factors for early detection of BC. The findings are however preliminary, and further studies with a larger sample size are required for verification and validation of previous findings.

Highlights

Mohammad Reza Haghshenas (Google Scholar)

Keywords

How to cite this article:

Mohammadi Z, Pouramir M, Haghshenas MR, Tahmasebi S, Ghaderi A. Identification of immunogenic proteins in early and advanced stages of breast cancer: an immunoproteomics study. Middle East J Cancer. 2023;14(4):498-508. doi: 10.30476/mejc.2023.96713.1833.

 

  1. Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res. 2017;50(1):33. doi: 10.1186/s40659-017-0140-9.
  2. Moghbeli M. Genetic and molecular biology of breast cancer among Iranian patients. J Transl Med. 2019;17(1):218. doi: 10.1186/s12967-019-1968-2.
  3. McPherson K, Steel CM, Dixon JM. ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ. 2000;321(7261):624-8. doi: 10.1136/bmj.321.7261.624.
  4. Anders CK, Johnson R, Litton J, Phillips M, Bleyer A. Breast cancer before age 40 years. Semin Oncol. 2009;36(3):237-49. doi: 10.1053/j.seminoncol.2009.03.001.
  5. Atak A, Mukherjee S, Jain R, Gupta S, Singh VA, Gahoi N, et al. Protein microarray applications: Autoantibody detection and posttranslational modification. Proteomics. 2016;16(19):2557-69. doi: 10.1002/pmic.201600104.
  6. Criscitiello C. Tumor-associated antigens in breast cancer. Breast Care (Basel). 2012;7(4):262-6. doi: 10.1159/000342164.
  7. Yu R, Yang S, Liu Y, Zhu Z. Identification and validation of serum autoantibodies in children with B-cell acute lymphoblastic leukemia by serological proteome analysis. Proteome Sci. 2022;20(1):3. doi: 10.1186/s12953-021-00184-w.
  8. Looi KS, Nakayasu ES, Diaz RA, Tan EM, Almeida IC, Zhang JY. Using proteomic approach to identify tumor-associated antigens as markers in hepatocellular carcinoma. J Proteome Res. 2008;7(9):4004-12. doi: 10.1021/pr800273h.
  9. Wang H, Zhang B, Li X, Zhou D, Li Y, Jia S, et al. Identification and validation of novel serum autoantibody biomarkers for early detection of colorectal cancer and advanced adenoma. Front Oncol. 2020;10:1081. doi: 10.3389/fonc.2020.01081.
  10. Dai L, Li J, Tsay JJ, Yie TA, Munger JS, Pass H, et al. Identification of autoantibodies to ECH1 and HNRNPA2B1 as potential biomarkers in the early detection of lung cancer. Oncoimmunology. 2017;6(5):e1310359. doi: 10.1080/2162402X.2017.1310359.
  11. Dai L, Li J, Xing M, Sanchez TW, Casiano CA, Zhang JY. Using serological proteome analysis to identify serum anti-nucleophosmin 1 autoantibody as a potential biomarker in European-American and African-American patients with prostate cancer. Prostate. 2016;76(15):1375-86. doi: 10.1002/pros.23217.
  12. Desmetz C, Bascoul-Mollevi C, Rochaix P, Lamy PJ, Kramar A, Rouanet P, et al. Identification of a new panel of serum autoantibodies associated with the presence of in situ carcinoma of the breast in younger women. Clin Cancer Res. 2009;15(14):4733-41. doi: 10.1158/1078-0432.CCR-08-3307.
  13. Beutgen VM, Perumal N, Pfeiffer N, Grus FH. Autoantibody biomarker discovery in primary open angle glaucoma using serological proteome analysis (SERPA). Front Immunol. 2019;10:381. doi: 10.3389/fimmu.2019.00381.
  14. Macdonald IK, Parsy-Kowalska CB, Chapman CJ. Autoantibodies: opportunities for early cancer detection. Trends Cancer. 2017;3(3):198-213. doi: 10.1016/j.trecan.2017.02.003.
  15. Chapman C, Murray A, Chakrabarti J, Thorpe A, Woolston C, Sahin U, et al. Autoantibodies in breast cancer: their use as an aid to early diagnosis. Ann Oncol. 2007;18(5):868-73. doi: 10.1093/annonc/mdm007.
  16. Cenci S, Sitia R. Managing and exploiting stress in the antibody factory. FEBS Lett. 2007;581(19):3652-7. doi: 10.1016/j.febslet.2007.04.031.
  17. Lu H, Ladd J, Feng Z, Wu M, Goodell V, Pitteri SJ, et al. Evaluation of known oncoantibodies, HER2, p53, and cyclin B1, in prediagnostic breast cancer sera. Cancer Prev Res (Phila). 2012;5(8):1036-43. doi: 10.1158/1940-6207.CAPR-11-0558.
  18. Liu Y, Liao Y, Xiang L, Jiang K, Li S, Huangfu M, et al. A panel of autoantibodies as potential early diagnostic serum biomarkers in patients with breast cancer. Int J Clin Oncol. 2017;22(2):291-6. doi: 10.1007/s10147-016-1047-0.
  19. Fankhauser R, DePatie N, Berryman R, Lucero OM, Kulkarni RP. Engineering technologies and clinical translation. In: Amiji MM, Milane LS, editors. Proteomic biomarker technology for cancer immunotherapy. Elsevier, 2022;p.357-397.
  20. Luo R, Zheng C, Song W, Tan Q, Shi Y, Han X. High-throughput and multi-phases identification of autoantibodies in diagnosing early-stage breast cancer and subtypes. Cancer Sci. 2022;113(2):770-83. doi: 10.1111/cas.15227.
  21. Mojtahedi Z, Safaei A, Yousefi Z, Ghaderi A. Immunoproteomics of HER2-positive and HER2-negative breast cancer patients with positive lymph nodes. OMICS. 2011;15(6):409-18. doi: 10.1089/omi.2010.0131.
  22. Hooimeijer P, Veanes M. An Evaluation of automata algorithms for string analysis. In: Jhala R, Schmidt D, editors. Verification, model checking, and abstract interpretation. VMCAI 2011. Lecture Notes in Computer Science, vol 6538. Springer, Berlin, Heidelberg; 2011.p.248-262. doi.org/10.1007/978-3-642-18275-4_18.
  23. Edechi CA, Ikeogu N, Uzonna JE, Myal Y. Regulation of immunity in breast cancer. Cancers (Basel). 2019;11(8):1080. doi: 10.3390/cancers11081080.
  24. Chen T, Huang Z, Tian Y, Wang H, Ouyang P, Chen H, et al. Role of triosephosphate isomerase and downstream functional genes on gastric cancer. Oncol Rep. 2017;38(3):1822-32. doi: 10.3892/or.2017.5846.
  25. Tamesa MS, Kuramitsu Y, Fujimoto M, Maeda N, Nagashima Y, Tanaka T, et al. Detection of autoantibodies against cyclophilin A and triosephosphate isomerase in sera from breast cancer patients by proteomic analysis. Electrophoresis. 2009;30(12):2168-81. doi: 10.1002/elps.200800675.
  26. Kim RH, Peters M, Jang Y, Shi W, Pintilie M, Fletcher GC, et al. DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell. 2005;7(3):263-73. doi: 10.1016/j.ccr.2005.02.010.
  27. Jin W. Novel insights into PARK7 (DJ-1), a potential anti-cancer therapeutic target, and implications for cancer progression. J Clin Med. 2020;9(5):1256. doi: 10.3390/jcm9051256.
  28. Kawate T, Iwaya K, Koshikawa K, Moriya T, Yamasaki T, Hasegawa S, et al. High levels of DJ-1 protein and isoelectric point 6.3 isoform in sera of breast cancer patients. Cancer Sci. 2015;106(7):938-43. doi: 10.1111/cas.12673.
  29. Ismail IA, Kang HS, Lee HJ, Kim JK, Hong SH. DJ-1 upregulates breast cancer cell invasion by repressing KLF17 expression. Br J Cancer. 2014;110(5):1298-306. doi: 10.1038/bjc.2014.40.
  30. Champattanachai V, Netsirisawan P, Chaiyawat P, Phueaouan T, Charoenwattanasatien R, Chokchaichamnankit D, et al. Proteomic analysis and abrogated expression of O-GlcNAcylated proteins associated with primary breast cancer. Proteomics. 2013;13(14):2088-99. doi: 10.1002/pmic.201200126.
  31. Vilar R, Fish RJ, Casini A, Neerman-Arbez M. Fibrin(ogen) in human disease: both friend and foe. Haematologica. 2020;105(2):284-96. doi: 10.3324/haematol.2019.236901.
  32. Rickles FR, Falanga A. Activation of clotting factors in cancer. Cancer Treat Res. 2009;148:31-41. doi: 10.1007/978-0-387-79962-9_3.
  33. Pichler M, Hutterer GC, Stojakovic T, Mannweiler S, Pummer K, Zigeuner R. High plasma fibrinogen level represents an independent negative prognostic factor regarding cancer-specific, metastasis-free, as well as overall survival in a European cohort of non-metastatic renal cell carcinoma patients. Br J Cancer. 2013;109(5):1123-9. doi: 10.1038/bjc.2013.443.
  34. Ma Y, Qian Y, Lv W. The correlation between plasma fibrinogen levels and the clinical features of patients with ovarian carcinoma. J Int Med Res. 2007;35(5):678-84. doi: 10.1177/147323000703500512.
  35. Fayazfar S, Zali H, Arefi Oskouie A, Asadzadeh Aghdaei H, Rezaei Tavirani M, Nazemalhosseini Mojarad E. Early diagnosis of colorectal cancer via plasma proteomic analysis of CRC and advanced adenomatous polyp. Gastroenterol Hepatol Bed Bench. 2019;12(4):328-39.
  36. Dauden MI, López-Perrote A, Llorca O. RUVBL1-RUVBL2 AAA-ATPase: a versatile scaffold for multiple complexes and functions. Curr Opin Struct Biol. 2021;67:78-85. doi: 10.1016/j.sbi.2020.08.010.
  37. Lin D, Lin B, Bhanot H, Riou R, Abt NB, Rajagopal J, et al. RUVBL1 is an amplified epigenetic factor promoting proliferation and inhibiting differentiation program in head and neck squamous cancers. Oral Oncol. 2020;111:104930. doi: 10.1016/j.oraloncology.2020.104930.
  38. Guo H, Zhang XY, Peng J, Huang Y, Yang Y, Liu Y, et al. RUVBL1, a novel C-RAF-binding protein, activates the RAF/MEK/ERK pathway to promote lung cancer tumorigenesis. Biochem Biophys Res Commun. 2018;498(4):932-9. doi: 10.1016/j.bbrc.2018.03.084.
  39. Mukherjee M, Goswami S. Identification of key deregulated RNA-binding proteins in pancreatic cancer by meta-analysis and prediction of their role as modulators of oncogenesis. Front Cell Dev Biol. 2021;9:713852. doi: 10.3389/fcell.2021.713852.
  40. Fan W, Xie J, Xia J, Zhang Y, Yang M, Wang H, et al. RUVBL1-ITFG1 interaction is required for collective invasion in breast cancer. Biochim Biophys Acta Gen Subj. 2017;1861(7):1788-800. doi: 10.1016/j.bbagen.2017.03.016.